27,610 research outputs found

    A Bayesian estimate of the skewness of the Cosmic Microwave Background

    Get PDF
    We propose a formalism for estimating the skewness and angular power spectrum of a general Cosmic Microwave Background data set. We use the Edgeworth Expansion to define a non-Gaussian likelihood function that takes into account the anisotropic nature of the noise and the incompleteness of the sky coverage. The formalism is then applied to estimate the skewness of the publicly available 4 year Cosmic Background Explorer (COBE) Differential Microwave Radiometer data. We find that the data is consistent with a Gaussian skewness, and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially no effect on estimates of the power spectrum, if each Câ„“C_\ell is regarded as a separate parameter or if the angular power spectrum is parametrized in terms of an amplitude (Q) and spectral index (n). Fixing the value of the angular power spectrum at its maxiumum likelihood estimate, the best fit skewness is S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter

    Lorentz-breaking effects in scalar-tensor theories of gravity

    Full text link
    In this work, we study the effects of breaking Lorentz symmetry in scalar-tensor theories of gravity taking torsion into account. We show that a space-time with torsion interacting with a Maxwell field by means of a Chern-Simons-like term is able to explain the optical activity in syncrotron radiation emitted by cosmological distant radio sources. Without specifying the source of the dilaton-gravity, we study the dilaton-solution. We analyse the physical implications of this result in the Jordan-Fierz frame. We also analyse the effects of the Lorentz breaking in the cosmic string formation process. We obtain the solution corresponding to a cosmic string in the presence of torsion by keeping track of the effects of the Chern-Simons coupling and calculate the charge induced on this cosmic string in this framework. We also show that the resulting charged cosmic string gives us important effects concerning the background radiation.The optical activity in this case is also worked out and discussed.Comment: 10 pages, no figures, ReVTex forma

    Antimicrobial Resistance: the use of antimicrobials in the Livestock Sector

    Get PDF
    The use of antimicrobials in livestock production provides a basis for improving animal health and productivity. This in turn contributes to food security, food safety, animal welfare, protection of livelihoods and animal resources. However, there is increasing concern about levels of antimicrobial resistance in bacteria isolated from human, animal, food and environmental samples and how this relates to use of antimicrobials in livestock production. The report examines antimicrobial usage in livestock and its impact on public health and the food economy. Policy issues and knowledge gaps to manage antimicrobial use and the risk of antimicrobial resistance are identified and discussed

    Non-collinear coupling between magnetic adatoms in carbon nanotubes

    Full text link
    The long range character of the exchange coupling between localized magnetic moments indirectly mediated by the conduction electrons of metallic hosts often plays a significant role in determining the magnetic order of low-dimensional structures. In addition to this indirect coupling, here we show that the direct exchange interaction that arises when the moments are not too far apart may induce a non-collinear magnetic order that cannot be characterized by a Heisenberg-like interaction between the magnetic moments. We argue that this effect can be manipulated to control the magnetization alignment of magnetic dimers adsorbed to the walls of carbon nanotubes.Comment: 13 pages, 5 figures, submitted to PR

    Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap

    Full text link
    A self-organized system composed of classical particles confined in a two-dimensional parabolic trap and interacting through a potential with a short-range attractive part and long-range repulsive part is studied as function of temperature. The influence of the competition between the short-range attractive part of the inter-particle potential and its long-range repulsive part on the melting temperature is studied. Different behaviors of the melting temperature are found depending on the screening length (Îş\kappa) and the strength (BB) of the attractive part of the inter-particle potential. A re-entrant behavior and a thermal induced phase transition is observed in a small region of (Îş,B\kappa,B)-space. A structural hysteresis effect is observed as a function of temperature and physically understood as due to the presence of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    The initial conditions of the universe: how much isocurvature is allowed?

    Full text link
    We investigate the constraints imposed by the current data on correlated mixtures of adiabatic and non-adiabatic primordial perturbations. We discover subtle flat directions in parameter space that tolerate large (~60%) contributions of non-adiabatic fluctuations. In particular, larger values of the baryon density and a spectral tilt are allowed. The cancellations in the degenerate directions are explored and the role of priors elucidated.Comment: 4 pages, 4 figures. Submitted to PR

    Unidentified Galactic High-Energy Sources as Ancient Pulsar Wind Nebulae in the light of new high energy observations and the new code

    Full text link
    In a Pulsar Wind Nebula (PWN), the lifetime of inverse Compton (IC) emitting electrons exceeds the lifetime of its progenitor pulsar (as well as its shell-type remnant), but it also exceeds the age of those that emit via synchrotron radiation. Therefore, during its evolution, the PWN can remain bright in IC so that its GeV-TeV gamma-ray flux remains high for timescales much larger (for 10^5 - 10^6 yrs) than the pulsar lifetime and the X-ray PWN lifetime. In this scenario, the magnetic field in the cavity induced by the wind of the progenitor star plays a crucial role. This scenario is in line with the discovery of several unidentified or "dark" sources in the TeV gamma-ray band without X-ray counterparts; and it is also finding confirmation in the recent discoveries at GeV gamma rays. Moreover, these consequences could be also important for reinterpreting the detection of starburst galaxies in the TeV gamma-ray band when considering a leptonic origin of the gamma-ray signal. Both theoretical aspects and their observational proofs will be discussed, as well as the first results of our new modeling code.Comment: Proceedings of the 5th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2012
    • …
    corecore