38,883 research outputs found

    Fundamental Oscillation Periods of the Interlayer Exchange Coupling beyond the RKKY Approximation

    Full text link
    A general method for obtaining the oscillation periods of the interlayer exchange coupling is presented. It is shown that it is possible for the coupling to oscillate with additional periods beyond the ones predicted by the RKKY theory. The relation between the oscillation periods and the spacer Fermi surface is clarified, showing that non-RKKY periods do not bear a direct correspondence with the Fermi surface. The interesting case of a FCC(110) structure is investigated, unmistakably proving the existence and relevance of non-RKKY oscillations. The general conditions for the occurrence of non-RKKY oscillations are also presented.Comment: 34 pages, 10 figures ; to appear in J. Phys.: Condens. Mat

    Exchange coupling between magnetic layers across non-magnetic superlattices

    Full text link
    The oscillation periods of the interlayer exchange coupling are investigated when two magnetic layers are separated by a metallic superlattice of two distinct non-magnetic materials. In spite of the conventional behaviour of the coupling as a function of the spacer thickness, new periods arise when the coupling is looked upon as a function of the number of cells of the superlattice. The new periodicity results from the deformation of the corresponding Fermi surface, which is explicitly related to a few controllable parameters, allowing the oscillation periods to be tuned.Comment: 13 pages; 5 figures; To appear in J. Phys.: Cond. Matte

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N−2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    Strain-Modified RKKY Interaction in Carbon Nanotubes

    Get PDF
    For low-dimensional metallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the RKKY interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon nanotubes, allowing an interplay between mechanical and magnetic properties in future spintronic devices. We also examine the dimensional relationship between graphene and nanotubes with regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte

    On Describing Multivariate Skewness: A Directional Approach

    Get PDF
    Most multivariate measures of skewness in the literature measure the overall skewness of a distribution. While these measures are perfectly adequate for testing the hypothesis of distributional symmetry, their relevance for describing skewed distributions is less obvious. In this article, we consider the problem of characterising the skewness of multivariate distributions. We define directional skewness as the skewness along a direction and analyse parametric classes of skewed distributions using measures based on directional skewness. The analysis brings further insight into the classes, allowing for a more informed selection of particular classes for particular applications. In the context of Bayesian linear regression under skewed error we use the concept of directional skewness twice. First in the elicitation of a prior on the parameters of the error distribution, and then in the analysis of the skewness of the posterior distribution of the regression residuals.Bayesian methods, Multivariate distribution, Multivariate regression, Prior elicitation, Skewness.
    • …
    corecore