35,612 research outputs found

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl

    On the Benjamini--Hochberg method

    Full text link
    We investigate the properties of the Benjamini--Hochberg method for multiple testing and of a variant of Storey's generalization of it, extending and complementing the asymptotic and exact results available in the literature. Results are obtained under two different sets of assumptions and include asymptotic and exact expressions and bounds for the proportion of rejections, the proportion of incorrect rejections out of all rejections and two other proportions used to quantify the efficacy of the method.Comment: Published at http://dx.doi.org/10.1214/009053606000000425 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Conserved Charges and Integrability of the Conformal Affine Toda Models

    Full text link
    We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.Comment: 18 pages, LaTeX, (one appendix and one reference added, small changes in introduction and conclusions, eqs.(5.14) and (5.19) improved, final version to appear in Int. J. Modern Phys. A

    Constrained KP Models as Integrable Matrix Hierarchies

    Full text link
    We formulate the constrained KP hierarchy (denoted by \cKPK+1,M_{K+1,M}) as an affine sl^(M+K+1){\widehat {sl}} (M+K+1) matrix integrable hierarchy generalizing the Drinfeld-Sokolov hierarchy. Using an algebraic approach, including the graded structure of the generalized Drinfeld-Sokolov hierarchy, we are able to find several new universal results valid for the \cKP hierarchy. In particular, our method yields a closed expression for the second bracket obtained through Dirac reduction of any untwisted affine Kac-Moody current algebra. An explicit example is given for the case sl^(M+K+1){\widehat {sl}} (M+K+1), for which a closed expression for the general recursion operator is also obtained. We show how isospectral flows are characterized and grouped according to the semisimple {\em non-regular} element EE of sl(M+K+1)sl (M+K+1) and the content of the center of the kernel of EE.Comment: LaTeX, 19 pg

    The structures underlying soliton solutions in integrable hierarchies

    Full text link
    We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ``vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ``vacuum solitons'' by the dressing transformation procedure.Comment: Talk given at the I Latin American Symposium on High Energy Physics, I SILAFAE, Merida, Mexico, November/96, 5 pages, LaTeX, needs aipproc.tex, aipproc.sty, aipproc.cls, available from ftp://ftp.aip.org/ems/tex/macros/proceedings/6x9

    Generalized Miura Transformations, Two-Boson KP Hierarchies and their Reduction to KDV Hierarchies

    Full text link
    Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV, mKdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies.Comment: 12 pgs., LaTeX, IFT-P/011/93, UICHEP-TH/93-
    • …
    corecore