28,904 research outputs found
Building analytical three-field cosmological models
A difficult task to deal with is the analytical treatment of models composed
by three real scalar fields, once their equations of motion are in general
coupled and hard to be integrated. In order to overcome this problem we
introduce a methodology to construct three-field models based on the so-called
"extension method". The fundamental idea of the procedure is to combine three
one-field systems in a non-trivial way, to construct an effective three scalar
field model. An interesting scenario where the method can be implemented is
within inflationary models, where the Einstein-Hilbert Lagrangian is coupled
with the scalar field Lagrangian. We exemplify how a new model constructed from
our method can lead to non-trivial behaviors for cosmological parameters.Comment: 11 pages, and 3 figures, updated version published in EPJ
Carbon nanotube: a low-loss spin-current waveguide
We demonstrate with a quantum-mechanical approach that carbon nanotubes are
excellent spin-current waveguides and are able to carry information stored in a
precessing magnetic moment for long distances with very little dispersion and
with tunable degrees of attenuation. Pulsed magnetic excitations are predicted
to travel with the nanotube Fermi velocity and are able to induce similar
excitations in remote locations. Such an efficient way of transporting magnetic
information suggests that nanotubes are promising candidates for memory devices
with fast magnetization switchings
Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices
It is shown that the coupling between magnetic layers separated by
non-magnetic metallic superlattices can decay exponentially as a function of
the spacer thickness , as opposed to the usual decay. This effect
is due to the lack of constructive contributions to the coupling from extended
states across the spacer. The exponential behavior is obtained by properly
choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.
Exact static soliton solutions of 3+1 dimensional integrable theory with nonzero Hopf numbers
In this paper we construct explicitly an infinite number of Hopfions (static,
soliton solutions with non-zero Hopf topological charges) within the recently
proposed 3+1-dimensional, integrable and relativistically invariant field
theory. Two integers label the family of Hopfions we have found. Their product
is equal to the Hopf charge which provides a lower bound to the soliton's
finite energy. The Hopfions are constructed explicitly in terms of the toroidal
coordinates and shown to have a form of linked closed vortices.Comment: LaTeX, 7 pg
- …