7 research outputs found

    Platelets in aging and cancer—“double-edged sword”

    Get PDF
    Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a “healthy aging” strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression

    The role of phospho-tyrosine signaling in platelet biology and hemostasis

    Get PDF
    Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes

    Biotech-Educated Platelets: Beyond Tissue Regeneration 2.0

    Get PDF
    The increasing discoveries regarding the biology and functions of platelets in the last decade undoubtedly show that these cells are one of the most biotechnological human cells. This review summarizes new advances in platelet biology, functions, and new concepts of biotech-educated platelets that connect advanced biomimetic science to platelet-based additive manufacturing for tissue regeneration. As highly responsive and secretory cells, platelets could be explored to develop solutions that alter injured microenvironments through platelet-based synthetic biomaterials with instructive extracellular cues for morphogenesis in tissue engineering beyond tissue regeneration 2.0

    Phosphoproteome profiling reveals critical role of JAK-STAT signaling in maintaining chemoresistance in breast cancer

    Get PDF
    textabstractBreast cancer is responsible for 25% of cancer cases and 15% of cancer death among women. Treatment is usually prolonged and hampered by the development of chemoresistance. The molecular mechanisms maintaining the chemoresistant phenotype remains, however, largely obscure. As kinase signaling in general is highly drugable, identification of kinases essential for maintaining chemoresistance could prove therapeutically useful. Hence we compared cellular kinase activity in chemotherapy resistant MCF7Res cell

    Dichotomy in hedgehog signaling between human healthy vessel and atherosclerotic plaques

    No full text
    The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology as well as in atherosclerotic plaques has not been well investigated. Hence, we determined the status of HH pathway activity both in healthy vessels and atherosclerotic plaques. A series of 10 healthy organ donor-derived human vessels, 17 coronary atherosclerotic plaques and 24 atherosclerotic carotid plaques were investigated for HH pathway activity. We show that a healthy vessel is characterized by a high level of HH pathway activity but that atherosclerotic plaques are devoid of HH signaling despite the presence of HH ligand in these pathological structures. Thus, a dichotomy between healthy vessels and atherosclerotic plaques with respect to the activation status of the HH pathway exists, and it is tempting to suggest that downregulation of HH signaling contributes to long-term plaque stability

    Low-molecular-weight protein tyrosine phosphatase predicts prostate cancer outcome by increasing the metastatic potential

    No full text
    Background Low-risk patients suffering from prostate cancer (PCa) are currently placed under active surveillance rather than undergoing radical prostatectomy. However, clear parameters for selecting the right patient for each strategy are not available, and new biomarkers and treatment modalities are needed. Low-molecular-weight protein tyrosine phosphatase (LMWPTP) could present such a target. Objective To correlate expression levels of LMWPTP in primary PCa to clinical outcome, and determine the role of LMWPTP in prostate tumor cell biology. Design, setting, and participants Acid phosphatase 1, soluble (ACP1) expression was analyzed on microarray data sets, which were subsequently used in Ingenuity Pathway Analysis. Immunohistochemistry was performed on a tissue microarray containing material of 481 PCa patients whose clinicopathologic data were recorded. PCa cell line models were used to investigate the role of LMWPTP in cell proliferation, migration, adhesion, and anoikis resistance. Outcome measurements and statistical analysis The association between LMWPTP expression and clinical and pathologic outcomes was calculated using chi-square correlations and multivariable Cox regression analysis. Functional consequences of LMWPTP overexpression or downregulation were determined using migration and adhesion assays, confocal microscopy, Western blotting, and proliferation assays. Results and limitations LMWPTP expression was significantly increased in human PCa and correlated with earlier recurrence of disease (hazard ratio [HR]:1.99; p < 0.001) and reduced patient survival (HR: 1.53; p = 0.04). Unbiased Ingenuity analysis comparing cancer and normal prostate suggests migratory propensities in PCa. Indeed, overexpression of LMWPTP increases PCa cell migration, anoikis resistance, and reduces activation of f
    corecore