2 research outputs found

    Safety and immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in children in Sierra Leone: a randomised, double-blind, controlled trial

    Get PDF
    Background—Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vectorbased vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. Methods—This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1–17 years were enrolled in three age cohorts (12–17 years, 4–11 years, and 1–3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. Findings—From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1–3 years after placebo injection to 21% (30 of 144) of children aged 4–11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12–17 years and 4–11 years age cohorts after the first and second dose, and pyrexia in the 1–3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12–17 years (9929 ELISA units [EU]/mL [95% CI 8172–12 064]), in 119 (99%) of 120 aged 4–11 years (10 212 EU/mL [8419–12 388]), and in 118 (98%) of 121 aged 1–3 years (22 568 EU/mL [18 426–27 642]). Interpretation—The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1–17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children

    Lancet Infect Dis

    No full text
    Background To address the unmet medical need for an effective prophylactic vaccine against Ebola virus we assessed the safety and immunogenicity of three different two-dose heterologous vaccination regimens with a replication-deficient adenovirus type 26 vector-based vaccine (Ad26.ZEBOV), expressing Zaire Ebola virus glycoprotein, and a non-replicating, recombinant, modified vaccinia Ankara (MVA) vector-based vaccine, encoding glycoproteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and nucleoprotein from the Tai Forest virus. Methods This randomised, observer-blind, placebo-controlled, phase 2 trial was done at seven hospitals in France and two research centres in the UK. Healthy adults (aged 18–65 years) with no history of Ebola vaccination were enrolled into four cohorts. Participants in cohorts I–III were randomly assigned (1:1:1) using computer-generated randomisation codes into three parallel groups (randomisation for cohorts II and III was stratified by country and age), in which participants were to receive an intramuscular injection of Ad26.ZEBOV on day 1, followed by intramuscular injection of MVA-BN-Filo at either 28 days (28-day interval group), 56 days (56-day interval group), or 84 days (84-day interval group) after the first vaccine. Within these three groups, participants in cohort II (14:1) and cohort III (10:3) were further randomly assigned to receive either Ad26.ZEBOV or placebo on day 1, followed by either MVA-BN-Filo or placebo on days 28, 56, or 84. Participants in cohort IV were randomly assigned (5:1) to receive one dose of either Ad26.ZEBOV or placebo on day 1 for vector shedding assessments. For cohorts II and III, study site personnel, sponsor personnel, and participants were masked to vaccine allocation until all participants in these cohorts had completed the post-MVA-BN-Filo vaccination visit at 6 months or had discontinued the trial, whereas cohort I was open-label. For cohort IV, study site personnel and participants were masked to vaccine allocation until all participants in this cohort had completed the post-vaccination visit at 28 days or had discontinued the trial. The primary outcome, analysed in all participants who had received at least one dose of vaccine or placebo (full analysis set), was the safety and tolerability of the three vaccination regimens, as assessed by participant-reported solicited local and systemic adverse events within 7 days of receiving both vaccines, unsolicited adverse events within 42 days of receiving the MVA-BN-Filo vaccine, and serious adverse events over 365 days of follow-up. The secondary outcome was humoral immunogenicity, as measured by the concentration of Ebola virus glycoprotein-binding antibodies at 21 days after receiving the MVA-BN-Filo vaccine. The secondary outcome was assessed in the per-protocol analysis set. This study is registered at ClinicalTrials.gov, NCT02416453, and EudraCT, 2015-000596-27. Findings Between June 23, 2015, and April 27, 2016, 423 participants were enrolled: 408 in cohorts I–III were randomly assigned to the 28-day interval group (123 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), the 56-day interval group (124 to receive Ad26.ZEBOV and MVA-BN-Filo, and 13 to receive placebo), and the 84-day interval group (117 to receive Ad26.ZEBOV and MVA-BN-Filo, and 18 to receive placebo), and 15 participants in cohort IV were assigned to receive Ad26.ZEBOV and MVA-BN-Filo (n=13) or to receive placebo (n=2). 421 (99·5%) participants received at least one dose of vaccine or placebo. The trial was temporarily suspended after two serious neurological adverse events were reported, one of which was considered as possibly related to vaccination, and per-protocol vaccination was disrupted for some participants. Vaccinations were generally well tolerated. Mild or moderate local adverse events (mostly pain) were reported after 206 (62%) of 332 Ad26.ZEBOV vaccinations, 136 (58%) of 236 MVA-BN-Filo vaccinations, and 11 (15%) of 72 placebo injections. Systemic adverse events were reported after 255 (77%) Ad26.ZEBOV vaccinations, 116 (49%) MVA-BN-Filo vaccinations, and 33 (46%) placebo injections, and included mostly mild or moderate fatigue, headache, or myalgia. Unsolicited adverse events occurred after 115 (35%) of 332 Ad26.ZEBOV vaccinations, 81 (34%) of 236 MVA-BN-Filo vaccinations, and 24 (33%) of 72 placebo injections. At 21 days after receiving the MVA-BN-Filo vaccine, geometric mean concentrations of Ebola virus glycoprotein-binding antibodies were 4627 ELISA units (EU)/mL (95% CI 3649–5867) in the 28-day interval group, 10 131 EU/mL (8554–11 999) in the 56-day interval group, and 11 312 mL (9072–14106) in the 84-day interval group, with antibody concentrations persisting at 1149–1205 EU/mL up to day 365. Interpretation The two-dose heterologous regimen with Ad26.ZEBOV and MVA-BN-Filo was safe, well tolerated, and immunogenic, with humoral and cellular immune responses persisting for 1 year after vaccination. Taken together, these data support the intended prophylactic indication for the vaccine regimen. Funding Innovative Medicines Initiative and Janssen Vaccines & Prevention BV
    corecore