2,383 research outputs found

    Performance of the PADME calorimeter prototype at the DAΦ\PhiNE BTF

    Full text link
    The PADME experiment at the DAΦ\PhiNE Beam-Test Facility (BTF) aims at searching for invisible decays of the dark photon by measuring the final state missing mass in the process e+eγ+Ae^+e^- \to \gamma+ A', with AA' undetected. The measurement requires the determination of the 4-momentum of the recoil photon, performed using a homogeneous, highly segmented BGO crystals calorimeter. We report the results of the test of a 5×\times5 crystals prototype performed with an electron beam at the BTF in July 2016

    SiPM application for a detector for UHE neutrinos tested at Sphinx Station

    Get PDF
    We present the preliminary test results of the prototype detector working at Sphinx Observatory Center Jungfraujoch (similar to 3800 m a.s.l.) HFSJG Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between 25 degrees C and 5 degrees C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read out part. Measurements at different temperature at fixed bias voltage (similar to 29.5 V) were performed to reconstruct tracks by Time Of Flight. (C) 2014 Elsevier B.V. All rights reserved

    Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

    Full text link
    The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in Italy, will search for invisible decays of the hypothetical dark photon via the process e+eγAe^+e^-\rightarrow \gamma A', where the AA' escapes detection. The dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We report here on measurement and simulation studies of the performance of the Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting 2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of less than 200 ps, which is satisfied by the choice of PbF2_2 crystals and the newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns) and a single-crystal energy resolution of 5.7%/E\sqrt{E} with light yield of 2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test Facility of LNF. We also propose the investigation of a two-PMT solution coupled to a single PbF2_2 crystal for higher-energy applications, which has potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie

    INFN Camera demonstrator for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer, self-trigger and on-demand digitization capabilities specifically developed for this purpose. The pixel dimensions of 6×66\times6 mm2^2 lead to a very compact design with challenging problems of thermal dissipation. A modular structure, made by copper frames hosting one PSM and the corresponding FEE, has been conceived, with a water cooling system to keep the required working temperature. The actual design, the adopted technical solutions and the achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Risk and Clinical Risk Factors associated With Late Lower Cranial Neuropathy in Long-Term oropharyngeal Squamous Cell Carcinoma Survivors

    Get PDF
    IMPORTANCE: Lower cranial neuropathy (LCNP) is a rare, but permanent, late effect of radiotherapy and other cancer therapies. Lower cranial neuropathy is associated with excess cancer-related symptoms and worse swallowing-related quality of life. Few studies have investigated risk and clinical factors associated with late LCNP among patients with long-term survival of oropharyngeal squamous cell carcinoma (OPSCC survivors). OBJECTIVE: to estimate the cumulative incidence of and identify clinical factors associated with late LCNP among long-term OPSCC survivors. DESIGN, SETTING, AND PARTICIPANTS: This single-institution cohort study included disease-free adult OPSCC survivors who completed curative treatment from January 1, 2000, to December 31, 2013. Exclusion criteria consisted of baseline LCNP, recurrent head and neck cancer, treatment at other institutions, death, and a second primary, persistent, or recurrent malignant neoplasm of the head and neck less than 3 months after treatment. Median survival of OPSCC among the 2021 eligible patients was 6.8 (range, 0.3-18.4) years. Data were analyzed from October 12, 2019, to November 13, 2020. MAIN OUTCOMES AND MEASURES: Late LCNP events were defined by neuropathy of the glossopharyngeal, vagus, and/or hypoglossal cranial nerves at least 3 months after cancer therapy. Cumulative incidence of LCNP was estimated using the Kaplan-Meier method, and multivariable Cox proportional hazards models were fit. RESULTS: Among the 2021 OPSCC survivors included in the analysis of this cohort study (1740 [86.1%] male; median age, 56 [range, 28-86] years), 88 (4.4%) were diagnosed with late LCNP, with median time to LCNP of 5.4 (range, 0.3-14.1) years after treatment. Cumulative incidence of LCNP was 0.024 (95% CI, 0.017-0.032) at 5 years, 0.061 (95% CI, 0.048-0.078) at 10 years, and 0.098 (95% CI, 0.075-0.128) at 15 years of follow-up. Multivariable Cox proportional hazards regression identified T4 vs T1 classification (hazard ratio [HR], 3.82; 95% CI, 1.85-7.86) and accelerated vs standard radiotherapy fractionation (HR, 2.15; 95% CI, 1.34-3.45) as independently associated with late LCNP status, after adjustment. Among the subgroup of 1986 patients with nonsurgical treatment, induction chemotherapy regimens including combined docetaxel, cisplatin, and fluorouracil (TPF) (HR, 2.51; 95% CI, 1.35-4.67) and TPF with cetuximab (HR, 5.80; 95% CI, 1.74-19.35) along with T classification and accelerated radiotherapy fractionation were associated with late LCNP status after adjustment. CONCLUSIONS AND RELEVANCE: This single-institution cohort study found that, although rare in the population overall, cumulative risk of late LCNP progressed to 10% during the survivors\u27 lifetime. As expected, clinical factors associated with LCNP primarily reflected greater tumor burden and treatment intensity. Further efforts are necessary to investigate risk-reduction strategies as well as surveillance and management strategies for this disabling late effect of cancer treatment

    Spatial Immunoprofiling of Adenoid Cystic Carcinoma Reveals B7-H4 Is a Therapeutic Target for Aggressive Tumors

    Get PDF
    PURPOSE: Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets. EXPERIMENTAL DESIGN: Tumor samples from 62 ACC patients with available RNA-sequencing data that had been collected as part of previous studies were stained with a panel of 28 validated metal-tagged antibodies. Imaging mass cytometry (IMC) was performed using the Fluidigm Helios CyTOF instrument and analyzed with Visiopharm software. The B7-H4 antibody-drug conjugate AZD8205 was tested in ACC patient-derived xenografts (PDX). RESULTS: RNA deconvolution revealed that most ACCs are immunologically cold, with approximately 30% being hot. ACC-I tumors with a poor prognosis harbored a higher density of immune cells; however, spatial analysis by IMC revealed that ACC-I immune cells were significantly restricted to the stroma, characterizing an immune-excluded TME. ACC-I tumors overexpressed the immune checkpoint B7-H4, and the degree of immune exclusion was directly correlated with B7-H4 expression levels, an independent predictor of poor survival. Two ACC-I/B7-H4-high PDXs obtained 90% complete responses to a single dose of AZD8205, but none were observed with isotype-conjugated payload or in an ACC-II/B7-H4 low PDX. CONCLUSIONS: Spatial analysis revealed that ACC subtypes have distinct TMEs, with enrichment of ACC-I immune cells that are restricted to the stroma. B7-H4 is highly expressed in poor-prognosis ACC-I subtype and is a potential therapeutic target

    Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-

    Get PDF
    In a sample of 471 million BB events collected with the BABAR detector at the PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is either e+e- or mu+mu-. We report results on partial branching fractions and isospin asymmetries in seven bins of di-lepton mass-squared. We further present CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi resonance. We find no evidence for CP or lepton-flavor violation. The partial branching fractions and isospin asymmetries are consistent with the Standard Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.

    Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)
    corecore