2 research outputs found
Boundary Conditions, Energies and Gravitational Heat in General Relativity (a Classical Analysis)
The variation of the energy for a gravitational system is directly defined
from the Hamiltonian field equations of General Relativity. When the variation
of the energy is written in a covariant form it splits into two (covariant)
contributions: one of them is the Komar energy, while the other is the
so-called covariant ADM correction term. When specific boundary conditions are
analyzed one sees that the Komar energy is related to the gravitational heat
while the ADM correction term plays the role of the Helmholtz free energy.
These properties allow to establish, inside a classical geometric framework, a
formal analogy between gravitation and the laws governing the evolution of a
thermodynamic system. The analogy applies to stationary spacetimes admitting
multiple causal horizons as well as to AdS Taub-bolt solutions.Comment: Latex file, 31 pages; one reference and two comments added, misprints
correcte