238 research outputs found
Is HDL cholesterol protective in patients with type 2 diabetes? A retrospective population-based cohort study
Background: The protective role of high HDL cholesterol levels against cardiovascular diseases has been recently questioned. Limited data are available on this specific topic in patients with type 2 diabetes mellitus (T2DM). We aimed to evaluate the association of HDL cholesterol concentrations with all-cause and cause-specific mortality in a historical cohort of T2DM patients with 14 years of follow-up. Methods: This is a retrospective population-based cohort study involving 2113 T2DM patients attending the Diabetic Clinic of Asti. Survival analyses were performed to assess hazard ratios for overall and specific-cause mortality by HDL cholesterol tertiles, using the middle HDL cholesterol tertile as a reference. Results: The mean age was 66 \ub1 11 years; 51.4% of patients had low HDL-cholesterol levels. After a 14-year follow-up, 973/2112 patients had died (46.1%). The HDL cholesterol tertile cut-off points were 37.5 and 47.5 mg/dL (males) and 41.5 and 52.0 mg/dL (females). No associations between lower and upper HDL cholesterol tertiles respectively and all-cause (HR = 1.12; 95% CI 0.96-1.32; HR = 1.11; 0.95-1.30), cardiovascular (HR = 0.97; 0.77-1.23; HR = 0.94; 0.75-1.18) or cancer (HR = 0.92; 0.67-1.25; HR = 0.89; 0.66-1.21) mortality were found. A significantly increased risk for infectious disease death was found both in the lower (HR = 2.62; 1.44-4.74) and the upper HDL-cholesterol tertiles (HR = 2.05; 1.09-3.85) when compared to the reference. Individuals in the upper tertile showed an increased risk for mortality due to diabetes-related causes (HR = 1.87; 1.10-3.15). Conclusions: Our results corroborate the hypothesis that HDL cholesterol levels are nonprotective in T2DM patients. The U-shaped association between HDL-cholesterol levels and mortality associated with infectious diseases should be verified by further studies
Comprehensive Model for Physical and Cognitive Frailty: Current Organization and Unmet Needs
Aging is characterized by the decline and deterioration of functional cells and results in a wide variety of molecular damages and reduced physical and mental capacity. The knowledge on aging process is important because life expectancy is expected to rise until 2050. Aging cannot be considered a homogeneous process and includes different trajectories characterized by states of fitness, frailty, and disability. Frailty is a dynamic condition put between a normal functional state and disability, with reduced capacity to cope with stressors. This geriatric syndrome affects physical, neuropsychological, and social domains and is driven by emotional and spiritual components. Sarcopenia is considered one of the determinants and the biological substrates of physical frailty. Physical and cognitive frailty are separately approached during daily clinical practice. The concept of motoric cognitive syndrome has partially changed this scenario, opening interesting windows toward future approaches. Thus, the purpose of this manuscript is to provide an excursus on current clinical practice, enforced by aneddoctical cases. The analysis of the current state of the art seems to support the urgent need of comprehensive organizational model incorporating physical and cognitive spheres in the same umbrella
CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing
Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in ‘regulation of RNA splicing’ and ‘mRNA catabolic process’. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD
Impaired immunogenicity to COVID-19 vaccines in autoimmune systemic diseases. High prevalence of non-response in different patients’ subgroups
Autoimmune systemic diseases (ASD) may show impaired immunogenicity to COVID-19 vaccines. Our prospective observational multicenter study aimed to evaluate the seroconversion after the vaccination cycle and at 6-12-month follow-up, as well the safety and efficacy of vaccines in preventing COVID-19. The study included 478 unselected ASD patients (mean age 59 ± 15 years), namely 101 rheumatoid arthritis (RA), 38 systemic lupus erythematosus (SLE), 265 systemic sclerosis (SSc), 61 cryoglobulinemic vasculitis (CV), and a miscellanea of 13 systemic vasculitis. The control group included 502 individuals from the general population (mean age 59 ± 14SD years). The immunogenicity of mRNA COVID-19 vaccines (BNT162b2 and mRNA-1273) was evaluated by measuring serum IgG-neutralizing antibody (NAb) (SARS-CoV-2 IgG II Quant antibody test kit; Abbott Laboratories, Chicago, IL) on samples obtained within 3 weeks after vaccination cycle. The short-term results of our prospective study revealed significantly lower NAb levels in ASD series compared to controls [286 (53–1203) vs 825 (451–1542) BAU/mL, p < 0.0001], as well as between single ASD subgroups and controls. More interestingly, higher percentage of non-responders to vaccine was recorded in ASD patients compared to controls [13.2% (63/478), vs 2.8% (14/502); p < 0.0001]. Increased prevalence of non-response to vaccine was also observed in different ASD subgroups, in patients with ASD-related interstitial lung disease (p = 0.009), and in those treated with glucocorticoids (p = 0.002), mycophenolate-mofetil (p < 0.0001), or rituximab (p < 0.0001). Comparable percentages of vaccine-related adverse effects were recorded among responder and non-responder ASD patients. Patients with weak/absent seroconversion, believed to be immune to SARS-CoV-2 infection, are at high risk to develop COVID-19. Early determination of serum NAb after vaccination cycle may allow to identify three main groups of ASD patients: responders, subjects with suboptimal response, non-responders. Patients with suboptimal response should be prioritized for a booster-dose of vaccine, while a different type of vaccine could be administered to non-responder individuals
POS1246 COVID-19 IN ITALIAN PATIENTS WITH RHEUMATIC AUTOIMMUNE SYSTEMIC DISEASES: RESULTS OF A NATIONWIDE SURVEY STUDY
Background:
SARS-CoV-2 infection poses a serious challenge for patients with rheumatic autoimmune systemic diseases (ASD), characterized by marked immune-system dysregulation and frequent visceral organ involvement.
Objectives:
To evaluate the impact of Covid-19 pandemic in a large series of Italian patients with ASD.
Methods:
Our multicenter telephone survey (8-week period, March-April 2020) included a large series of 2,994 patients (584 M, 2,410 F, mean age 58.9±13.4SD years) with ASD followed at 34 tertiary referral centers of 14 regions of northern, central, and southern Italian macro areas, characterized by different prevalence of SARS-CoV-2 infection. According to currently used criteria, Covid-19 was classified as definite Covid-19 (signs or symptoms of Covid-19 confirmed by positive oral/nasopharyngeal swabs at PCR testing) or highly suspected Covid-19 (signs or symptoms highly
Regular and chaotic vibration in a piezoelectric energy harvester
We examine regular and chaotic responses of a vibrational energy harvester composed of a vertical beam and a tip mass. The beam is excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric patch. The mechanical resonator can be described by single or double well potentials depending on the gravity force from the tip mass. By changing the tip mass we examine bifurcations from single well oscillations, to regular and chaotic vibrations between the potential wells. The appearance of chaotic responses in the energy harvesting system is illustrated by the bifurcation diagram, the corresponding Fourier spectra, the phase portraits, and is confirmed by the 0–1 test. The appearance of chaotic vibrations reduces the level of harvested energy
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Detector signal characterization with a Bayesian network in XENONnT
We developed a detector signal characterization model based on a Bayesian network trained on the waveform attributes generated by a dual-phase xenon time projection chamber. By performing inference on the model, we produced a quantitative metric of signal characterization and demonstrate that this metric can be used to determine whether a detector signal is sourced from a scintillation or an ionization process. We describe the method and its performance on electronic-recoil (ER) data taken during the first science run of the XENONnT dark matter experiment. We demonstrate the first use of a Bayesian network in a waveform-based analysis of detector signals. This method resulted in a 3% increase in ER event-selection efficiency with a simultaneously effective rejection of events outside of the region of interest. The findings of this analysis are consistent with the previous analysis from XENONnT, namely a background-only fit of the ER data
Searching for Heavy Dark Matter near the Planck Mass with XENON1T
Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×10 and 2×10  GeV/c. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale
Search for events in XENON1T associated with Gravitational Waves
We perform a blind search for particle signals in the XENON1T dark matter
detector that occur close in time to gravitational wave signals in the LIGO and
Virgo observatories. No particle signal is observed in the nuclear recoil,
electronic recoil, CENS, and S2-only channels within 500 seconds of
observations of the gravitational wave signals GW170104, GW170729, GW170817,
GW170818, and GW170823. We use this null result to constrain mono-energetic
neutrinos and Beyond Standard Model particles emitted in the closest
coalescence GW170817, a binary neutron star merger. We set new upper limits on
the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at
90% confidence level. Furthermore, we constrain the product of coincident
fluence and cross section of Beyond Standard Model particles to be less than
cm/cm in the [5.5-210] keV energy range at 90% confidence
level
- …