3 research outputs found
EmoNets: Multimodal deep learning approaches for emotion recognition in video
The task of the emotion recognition in the wild (EmotiW) Challenge is to
assign one of seven emotions to short video clips extracted from Hollywood
style movies. The videos depict acted-out emotions under realistic conditions
with a large degree of variation in attributes such as pose and illumination,
making it worthwhile to explore approaches which consider combinations of
features from multiple modalities for label assignment. In this paper we
present our approach to learning several specialist models using deep learning
techniques, each focusing on one modality. Among these are a convolutional
neural network, focusing on capturing visual information in detected faces, a
deep belief net focusing on the representation of the audio stream, a K-Means
based "bag-of-mouths" model, which extracts visual features around the mouth
region and a relational autoencoder, which addresses spatio-temporal aspects of
videos. We explore multiple methods for the combination of cues from these
modalities into one common classifier. This achieves a considerably greater
accuracy than predictions from our strongest single-modality classifier. Our
method was the winning submission in the 2013 EmotiW challenge and achieved a
test set accuracy of 47.67% on the 2014 dataset