14 research outputs found

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations

    Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil.

    No full text
    Mouse erythrocytes were incubated with oxidizing agents, phenylhydrazine, divicine and isouramil. With all the oxidants a rapid release of iron in a desferrioxamine (DFO)-chelatable form was seen and it was accompanied by methaemoglobin formation. If the erythrocytes were depleted of GSH by a short preincubation with diethyl maleate, the release of iron was accompanied by lipid peroxidation and, subsequently, haemolysis. GSH depletion by itself did not induce iron release, methaemoglobin formation, lipid peroxidation or haemolysis. Rather, the fate of the cell in which iron is released depended on the intracellular availability of GSH. In addition, iron release was higher in depleted cells than in native ones, suggesting a role for GSH in preventing iron release when oxidative stress is imposed by the oxidants. Iron release preceded lipid peroxidation. The latter was prevented when the erythrocytes were preloaded with DFO in such a way (preincubation with 10 mM-DFO) that the intracellular concentration was equivalent to that of the released iron, but not when the intracellular DFO was lower (preincubation with 0.1 mM-DFO). Extracellular DFO did not affect lipid peroxidation and haemolysis, suggesting again that the observed events occur intracellularly (intracellular chelation of released iron). The relevance of iron release from iron complexes in the mechanisms of cellular damage induced by oxidative stress is discussed

    Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity.

    Get PDF
    AbstractIncubation of glutathione (GSH) depleted mouse erythrocytes with the oxidants phenylhydrazine, acrolein, divicine and isouramil resulted in the release of free iron and in lipid peroxidation and hemolysis. The addition of the flavonoid quercetin, which chelates iron and penetrates erythrocytes, resulted in remarkable protection against lipid peroxidation and hemolysis. The protection seems to be due to intracellular chelation of iron, since a semi-stoichiometric ratio between released iron and the amount of quercetin necessary to prevent lipid peroxidation and hemolysis was found. Incubation of GSH depleted human erythrocytes with divicine and isouramil did not induce lipid peroxidation and hemolysis in spite of a substantial release of iron. However, divicine and isouramil produced alterations of membrane proteins, such as spectrin and band 3, as well as formation of senescent cell antigen. The addition of quercetin prevented these alterations
    corecore