50 research outputs found

    Novel molecular catalysts for water oxidation: towards artificial photosynthesis

    Get PDF
    L’objectiud’aquesta tesi és el desenvolupamenticaracteritzacióde nouscatalitzadors per a l’oxidació d’aigua a partir complexos metàl•lics, especialment amb metalls de la primera sèrie de transició. En el segon capítol d’aquesta tesi s’explora la activitat catalítica homogènia per a l’oxidació d’aigua d’un compost de ruteni d’enllaç metall-metall, [Ru2(μ-O2CCH3)4]. Aquest catalitzador esta estabilitzat perlligands disponibles i de baix cost, per tant no requereix el disseny delligands orgànics. El tercer capítol d’aquesta tesi estudia l’activitatcatalítica d’un nou compost de cobalt basat en la química dels polioxometalts: [Co9(H2O)6(OH)3(HPO4)2(PW9O34)3]16− (Co9). Els nostres experiments demostren que aquest compost és un catalitzador homogeni per a l’oxidació d’aigua produïda químicament, electroquímicament o induïda per llum. En el quart capítol d’aquesta tesi es relata la preparacióicaracterització d'unpolímerbasaten un compost de cobalt de tipus blau de Prússia, hexacianoferratde cobalt (CoHCF),queposseeixmoltes delescaracterístiquesclau: es formaa partir de metalls abundants, funcionaa pHneutreicondicions ambientalsi ésrobust.The objective of this thesis is the development and characterization of new catalysts for the oxidation of water from metal complexes, especially first row transitionmetals. In the second chapter of this thesis we explore the homogeneous catalytic oxidation of water with a metal-metal bonded ruthenium compound [Ru2(μ-O2CCH3)4]. This catalyst is stabilized by available and inexpensive ligands, so it does not require the design of organic ligands. The third chapter of this thesis report the catalytic activity of a new cobalt compound based on polioxometalate chemistry [Co9(H2O)6(OH)3( HPO4 )2(PW9O34)3]16-( Co9). Our experiments show that this compound is a homogeneous catalyst for the oxidation of water produced chemically, induced by light or electrochemically. The fourth chapter of this thesis describes the preparation and characterization of a Prussian blue type polymer: cobalt hexacyanoferrate (CoHCF), which posses many of the key features necessaries for a viable WOC: it is formed from inexpensive metals, it works at neutral pH and ambient conditions and it is robust

    Rings which are Essential over their Centers, II

    Full text link
    A ring RR with center CC is said to be\textit{centrally essential} if the module RCR_C is an essential extension of the module CCC_C. We describe centrally essential exterior algebras of finitely generated free modules over not necessary commutative rings and study properties of semi-Artinian centrally essential rings. V.T.Markov is supported by the Russian Foundation for Basic Research, project 17-01-00895-A.~ A.A. Tuganbaev is supported by Russian Scientific Foundation, project 16-11-10013

    Molecular and electronic structure investigation of encapsulated polytiophenes

    Get PDF
    Insulated molecular wires (IMWs) are expected to be applied to various optoelectronic applications due to their unique photophysical, electronic, and mechanical properties which originate from the absence of -stacking.[1] Kazunori et al have succeeded in the synthesis of a self-threading polythiophene with a polyrotaxane-like 3D architecture (PSTB, see Figure 1a), for which an intrawire hole mobility of 0.9 cm2 V−1 s−1 has been measured.[2] In this study we aim to evaluate for the first time the extension of the -conjugation in encapsulated polythiophenes. A comparison between the experimental Raman spectra of the self-threading PSTB polymer with their correspondent oligomers (i.e. 2STB-5STB) suggests that the effective conjugation length in the polymer is longer than five monomer units. Whether the effective conjugation length of the polymer is better described by using the long oligomer extrapolation approach or periodic DFT calculations of the polymer is discussed in detailed by exploiting the very recent potentialities of state-of-the-art quantum chemical simulations of vibrational properties for crystalline solids.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Isolation and Characterization of Bacteria That Degrade Phosphonates in Marine Dissolved Organic Matter

    Get PDF
    Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.Gordon and Betty Moore Foundation (Award GBMF3298)Simons Foundation (Grant 329108

    Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades

    Get PDF
    The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source–sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air–water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m−2 d−1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %

    Recycling of dissolved iron in the North Pacific Subtropical Gyre

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawco, N. J., Yang, S.-C., Pinedo-Gonzalez, P., Black, E. E., Kenyon, J., Ferron, S., Bian, X., & John, S. G. Recycling of dissolved iron in the North Pacific Subtropical Gyre. Limnology and Oceanography, 67(11), (2022): 2448-2465, https://doi.org/10.1002/lno.12212.The importance of iron as a limiting nutrient in the open ocean is widely recognized, but there is substantial uncertainty about the rate that it cycles in the marine environment. Here, we combine measurements from the water column, sediment traps, and incubations to constrain Fe turnover during summer at Station ALOHA in the North Pacific Subtropical Gyre. Using low levels of 57Fe–58Fe double spike, measured with high precision by multi-collector inductively coupled plasma mass spectrometry, we find Fe uptake rates of 30–60 pM d−1 throughout the euphotic zone. Dissolved Fe turnover times are estimated at 10–15 d in the mixed layer and 1–3 d near the deep chlorophyll maximum. Aerosol Fe supply inferred from a thorium isotope mass balance indicates that the dissolved Fe residence time is approximately 6 months in the upper euphotic zone (0–75 m), relative to external sources, and 2 months in the lower euphotic zone (75–150 m). To reconcile these observations, the average Fe atom must be recycled over 25 times at Station ALOHA in both the upper and lower euphotic zones (an “Fe ratio” equal to 0.04 and 0.03, respectively), a level of conservation that has only been documented in Fe-limited regions thus far. At steady state, this scenario requires an aerosol Fe solubility of 4.5%, which is similar to dissolution experiments from Pacific Ocean aerosols. Our results suggest that the oligotrophic ocean is capable of recycling iron efficiently even when these ecosystems are not demonstrably iron-limited.This work was also supported by the Simons Foundation (602538 and 823167 to N.J.H., 329108 to S.G.J) and National Science Foundation grants 2022969 to N.J.H. and 1911990 to S.F

    Soft Templating and Disorder in an Applied 1D Cobalt Coordination Polymer Electrocatalyst

    Get PDF
    Disordered materials with resilient and soft-templated functional units bear the potential to fill the pipeline of robust catalysts for renewable energy storage. However, for novel materials lacking long-range order, the ability to discern local structure with atomic resolution still pushes the boundaries of current analytical and modeling approaches. We introduce a two-pillar strategy to monitor the formation and unravel the structure of the first disordered onedimensional cobalt coordination polymer catalyst, Co-dppeO2. This target material excels through proven high performance in commercial alkaline electrolyzers and organic transformations. We demonstrate that the key architecture behind this activity is the unconventional embedding of hydrated {H2O-Co2(OH)2-OH2} edge-site motifs, nested into a flexible organic matrix of highly oxidized and bridging hydrophobic dppeO2 ligands. Our combination of in situ spectroscopy and computational modeling of X-ray scattering and absorption spectra, backed with complementary experimental techniques, holds the key to understanding the atomic-range structure of important disordered materials

    Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean

    Get PDF
    The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2–4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10–100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore