59 research outputs found
Aplicación del análisis de imágenes a la determinación de la orientación de fibra larga de vidrio en diferentes condiciones de proceso
El uso de materiales reforzados con fibra larga de vidrio ha evolucionado de manera
creciente en los últimos años. Este hecho ha provocado que se necesite conocer el
comportamiento de determinadas características mecánicas del mismo y que por lo
tanto se busque una evaluación del comportamiento del mismo.
El análisis de imágenes se muestra como una forma válida y eficaz en la determinación
de la orientación de fibras. Por ello se ha diseñado una metodología basada en una
metodología optimizada de algoritmos se consigue identificar, aislar y medir la orientación de las fibras de refuerzo en materiales compuestos. Acompañado de una técnica simple de preparación de muestras, podemos establecer un sistema de análisis efectivo.
Esta metodología se ha aplicado en diversos procesos de transformación en los que
habitualmente están implicados los refuerzos de fibra de vidrio en composites.
Fundamentalmente se analiza el proceso de inyección, aunque no se olvidan procesos de
compresión y rtm. Posteriormente se realiza el análisis del error en el que se incurre en
la implementación del sistema.Ferrándiz Bou, S. (2007). Aplicación del análisis de imágenes a la determinación de la orientación de fibra larga de vidrio en diferentes condiciones de proceso [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1855Palanci
Study of the influence of the almond shell variety on the mechanical properties of starch-based polymer biocomposites
[EN] This article is focused on the development of a series of biodegradable and eco-friendly biocomposites based on starch polymer (Mater-Bi DI01A) filled with 30 wt % almond shell (AS) of different varieties (Desmayo Rojo, Largueta, Marcona, Mollar, and a commercial mixture of varieties) to study the influence of almond variety in the properties of injected biodegradable parts. The different AS varieties are analysed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). The biocomposites are prepared in a twin-screw extruder and characterized in terms of their mechanical (tensile, flexural, Charpy impact, and hardness tests) and thermal properties (differential scanning calorimetry (DSC) and TGA). Despite observing differences in the chemical composition of the individual varieties with respect to the commercial mixture, the results obtained from the mechanical characterisation of the biocomposites do not present significant differences between the diverse varieties used. From these results, it was concluded that the most recommended option is to work with the commercial mixture of almond shell varieties, as it is easier and cheaper to acquire.This research was supported by the Valencian Institute of Business Competitiveness (IVACE), grant number IMAMCE/2020/1.Ibáñez-García, A.; Martínez García, A.; Ferrándiz Bou, S. (2020). Study of the influence of the almond shell variety on the mechanical
properties of starch-based polymer biocomposites. Polymers. 12(19). https://doi.org/10.3390/polym12092049121
Recyclability Analysis of Starch Thermoplastic/Almond Shell Biocomposite
[EN] This article is focused on studying the effect of the reprocessing cycles on the mechanical, thermal, and aesthetic properties of a biocomposite. This process is based on starch thermoplastic polymer (TPS) filled with 20 wt% almond shell powder (ASP) and epoxidized linseed oil (ELO) as a compatibilizing additive. To do so, the biocomposite was prepared in a twin-screw extruder, molded by injection, and characterized in terms of its mechanical, thermal, and visual properties (according to CieLab) and the melt flow index (MFI). The analyses carried out were tensile, flexural, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of the reprocessing were also studied for the biodegradable unfilled TPS polymer. The results showed that TPS and TPS/ASP biocomposite suffer changes progressively on the properties studied after each reprocessing cycle. Furthermore, it was observed that the addition of ASP intensified these effects regarding TPS. However, in spite of the progressive degradation in both cases, it is technically feasible to reprocess the material at least three times without needing to incorporate virgin material.This research was funded by GVAIbáñez-García, A.; Martínez-García, A.; Ferrándiz Bou, S. (2021). Recyclability Analysis of Starch Thermoplastic/Almond
Shell Biocomposite. Polymers. 13(7). https://doi.org/10.3390/polym1307115913
Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites
Multi-layered glass and carbon-reinforced polymer composites may exhibit unique properties comparatively with the benchmark, proven they are being tailored bounded by several requirements. The paper herein approaches issues on the influence of the various contents and orientation of UD carbon fibre constitutive on the mechanical, dynamical and thermal expansion if embedded along with glass fibres in different stacking sequencing within an unsaturated polymer resin. The results show that the architectures with the highest content of carbon fibres (e.g. GF:CF(60:40) 0 and 90 )
provide the best tensile and flexural properties, and behave better under dynamical loading conditions and temperature variations, no matter the orientation directions. In addition, it was shown that a thorough understanding can be attained, with respect to the UD carbon fibre content, and different orientations influence on the overall composite material properties, taking into account the data retrieved from dynamical and thermal expansion runs.Luca Motoc, D.; Ferrándiz Bou, S.; Balart Gimeno, RA. (2015). Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. Journal of Composite Materials. 49(10):1211-1221. doi:10.1177/0021998314532151S121112214910Bunsell, A. R., & Harris, B. (1974). Hybrid carbon and glass fibre composites. Composites, 5(4), 157-164. doi:10.1016/0010-4361(74)90107-4Summerscales, J., & Short, D. (1978). Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 9(3), 157-166. doi:10.1016/0010-4361(78)90341-5Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13-23. doi:10.1016/0010-4361(87)90003-6Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 31(10), 1117-1125. doi:10.1016/s1359-835x(00)00068-3Stevanović, M., & Sekulić, D. P. (2003). Macromechanical Characteristics Deduced from Three-Point Flexure Tests on Unidirectional Carbon/Epoxy Composites. Mechanics of Composite Materials, 39(5), 387-392. doi:10.1023/b:mocm.0000003288.75552.cbTsukamoto, H. (2011). A mean-field micromechanical approach to design of multiphase composite laminates. Materials Science and Engineering: A, 528(7-8), 3232-3242. doi:10.1016/j.msea.2010.12.102Grozdanov, A., & Bogoeva-Gaceva, G. (2010). Carbon Fibers/Polyamide 6 Composites Based on Hybrid Yarns. Journal of Thermoplastic Composite Materials, 23(1), 99-110. doi:10.1177/0892705708095994Valenza, A., Fiore, V., & Di Bella, G. (2009). Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 44(11), 1351-1364. doi:10.1177/0021998309353215Mujika, F. (2006). On the difference between flexural moduli obtained by three-point and four-point bending tests. Polymer Testing, 25(2), 214-220. doi:10.1016/j.polymertesting.2005.10.006Shenghu Cao, Zhis WU, & Xin Wang. (2009). Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. Journal of Composite Materials, 43(4), 315-330. doi:10.1177/0021998308099224DUBOULOZMONNET, F., MELE, P., & ALBEROLA, N. (2005). Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology, 65(3-4), 437-443. doi:10.1016/j.compscitech.2004.09.012Kishi, H., Kuwata, M., Matsuda, S., Asami, T., & Murakami, A. (2004). Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology, 64(16), 2517-2523. doi:10.1016/j.compscitech.2004.05.006Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., & Ikegami, K. (2006). Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon, 44(10), 2002-2008. doi:10.1016/j.carbon.2006.01.026TANIGUCHI, N., NISHIWAKI, T., HIRAYAMA, N., NISHIDA, H., & KAWADA, H. (2009). Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions. Composites Science and Technology, 69(2), 207-213. doi:10.1016/j.compscitech.2008.10.002Bosze, E. J., Alawar, A., Bertschger, O., Tsai, Y.-I., & Nutt, S. R. (2006). High-temperature strength and storage modulus in unidirectional hybrid composites. Composites Science and Technology, 66(13), 1963-1969. doi:10.1016/j.compscitech.2006.01.020Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2009). Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. doi:10.1177/0731684409103075Pothan, L. A., Potschke, P., Habler, R., & Thomas, S. (2005). The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 39(11), 1007-1025. doi:10.1177/0021998305048737Jakubinek, M. B., Whitman, C. A., & White, M. A. (2009). Negative thermal expansion materials. Journal of Thermal Analysis and Calorimetry, 99(1), 165-172. doi:10.1007/s10973-009-0458-9Ito, T., Suganuma, T., & Wakashima, K. (1999). Journal of Materials Science Letters, 18(17), 1363-1365. doi:10.1023/a:1006694601493Pardini, L. C., & Gregori, M. L. (2010). Modeling elastic and thermal properties of 2.5D carbon fiber C/SiC hybrid matrix composites by homogenization method. Journal of Aerospace Technology and Management, 2(2), 183-194. doi:10.5028/jatm.2010.02026510Tsai, Y. I., Bosze, E. J., Barjasteh, E., & Nutt, S. R. (2009). Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology, 69(3-4), 432-437. doi:10.1016/j.compscitech.2008.11.012Kia, H. G. (2008). Thermal Expansion of Sheet Molding Compound Materials. Journal of Composite Materials, 42(7), 681-695. doi:10.1177/002199830808859
INFLUENCE OF THE ADDITION OF 0.5 AND 1% IN WEIGHT OF MULTI-WALL CARBON NANOTUBES (MWCNTs) IN POLY-LACTIC ACID (PLA) FOR 3D PRINTING
[EN] This research paper presents the characterization of a nanocomposite of polylactic acid (PLA) and carbon nanotubes (MWCNTs) with different percentages of mixture in weight. This thermal characterization determines the influence carbon nanotubes have when those are added into PLA. This last one been used for additive manufacturing (FFF technology).. Once finished the tests, it was observed that the nanocomposite PLA/MWCNTs have a positive application during 3D printing. The extrusion temperatures used in tests were between 177 and 185ºC. The parameters given for the SLISER software, obtained a promising result for the application of a PLA / MWCNT nanocomposite into 3D printing.Cobos, C.; Conejero Rodilla, A.; Fenollar, O.; Ferrándiz Bou, S. (2019). INFLUENCE OF THE ADDITION OF 0.5 AND 1% IN WEIGHT OF MULTI-WALL CARBON NANOTUBES (MWCNTs) IN POLY-LACTIC ACID (PLA) FOR 3D PRINTING. Procedia Manufacturing. 41:875-881. https://doi.org/10.1016/j.promfg.2019.10.010S8758814
Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites
[EN] The objective of this study was to investigate the thermal expansivities and degradation properties for several in vitro
conditioned biodegradable poly(lactic acid)/hydroxyapatite (PLA/HA) and poly(lactic acid)/b-tricalcium phosphate (PLA/
bTCP) composites with different mass% of the particle reinforcements (i.e. 10, 20 and 30). The samples were prepared by
extrusion followed by injection moulding and incubated in a customized simulated body fluid at 37 C over 60, 90, 120,
150 and 180 days, respectively. Thermal expansion and degradation properties of in vitro conditioned samples, along with
dynamic mechanical properties of unconditioned ones, were systematically investigated through coefficients of linear
thermal expansion and thermal strain changes, decomposition temperatures, mass changes and per cent residues. The
results indicated that PLA/bTCP composites performed better than PLA/HA composites, irrespective of their filler mass%,
revealing high values of glass transition temperatures, around a mean value of 65 C, both on dynamic mechanical analysis
and on dilatation measurements but lower values on their degradation temperatures, such as 360 C. The results suggest the
feasibility of tailoring high-loaded osteoconductive fillers-reinforced PLA composites for various medical and engineering
applications.Ferri, JM.; Motoc, DL.; Ferrándiz Bou, S.; Balart, R. (2019). Thermal expansivity and degradation properties of PLA/HA and PLA/
bTCP in vitro conditioned composites. Journal of Thermal Analysis and Calorimetry (Online). 138(4):2691-2702. https://doi.org/10.1007/s10973-019-08799-0S269127021384Auras R, Lim LT, Selke S, Tsuji H. Poly(lactic acid): structures, production, synthesis, and applications. New York: Wiley; 2010.Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.Haaparanta A-M, Haimi S, Ellä V, Hopper N, Miettinen S, Suuronen R, et al. Porous polylactide/β-tricalcium phosphate composite scaffolds for tissue engineering applications. J Tissue Eng Regen Med. 2010;4(5):366–73.Ahmed J, Varshney SK. Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop. 2011;14(1):37–58.Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84.Slomkowski S, Penczek S, Duda A. Polylactides—an overview. Polym Adv Technol. 2014;25(5):436–47.Avinc O, Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009;41(6):391–401.Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Impact modified PLA-hydroxyapatite composites—thermo-mechanical properties. Compos A Appl Sci Manuf. 2018;107:326–33.Nazhat SN, Kellomäki M, Törmälä P, Tanner KE, Bonfield W. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J Biomed Mater Res. 2001;58(4):335–43.Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004;238(1):314–9.Li J, Zheng W, Li L, Zheng Y, Lou X. Thermal degradation kinetics of g-HA/PLA composite. Thermochim Acta. 2009;493(1):90–5.Zhang SM, Liu J, Zhou W, Cheng L, Guo XD. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr Appl Phys. 2005;5(5):516–8.Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos A Appl Sci Manuf. 2017;103:96–105.Kang Y, Yao Y, Yin G, Huang Z, Liao X, Xu X, et al. A study on the in vitro degradation properties of poly(l-lactic acid)/β-tricalcuim phosphate(PLLA/β-TCP) scaffold under dynamic loading. Med Eng Phys. 2009;31(5):589–94.Huang J, Ten E, Liu G, Finzen M, Yu W, Lee JS, et al. Biocomposites of pHEMA with HA/β-TCP (60/40) for bone tissue engineering: swelling, hydrolytic degradation, and in vitro behavior. Polymer. 2013;54(3):1197–207.Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials. 2002;23(7):1579–85.Ferri J, Gisbert I, García-Sanoguera D, Reig M, Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). J Compos Mater. 2016;50(30):4189–98.Li X, Qi C, Han L, Chu C, Bai J, Guo C, et al. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomater. 2017;64:269–78.Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials. 2000;21(23):2443–52.Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of β-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res. 2002;62(2):265–72.Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820–52.Ignjatovic N, Suljovrujic E, Budinski-Simendic J, Krakovsky I, Uskokovic D. Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J Biomed Mater Res B Appl Biomater. 2004;71B(2):284–94.Martin C. Twin screw extrusion for pharmaceutical processes. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York: Springer; 2013. p. 47–79.Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.Corcione C, Scalera F, Gervaso F, Montagna F, Sannino A, Maffezzoli A. One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J Therm Anal Calorim. 2018;134:1–8.Siqueira L, Passador FR, Costa MM, Lobo AO, Sousa E. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Mater Sci Eng C. 2015;52:135–43.Drummer D, Cifuentes-Cuéllar S, Rietzel D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp J. 2012;18(6):500–7.Ferri J, Jordá J, Montanes N, Fenollar O, Balart R. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. J Thermoplast Compos Mater. 2018;31(7):865–81.Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. New York: Wiley; 2014.Aboudi J, Arnold SM, Bednarcyk BA. Chapter 3—fundamentals of the mechanics of multiphase materials. In: Aboudi J, Arnold SM, Bednarcyk BA, editors. Micromechanics of composite materials. Oxford: Butterworth-Heinemann; 2013. p. 87–145.Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2018;45:2803–10.Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009;97(3):929.Schindler A, Doedt M, Gezgin Ş, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129(2):833–42.Lee WA, Knight GJ. Ratio of the glass transition temperature to the melting point in polymers. Br Polym J. 1970;2(1):73–80
Aspects of Industrial Design and Their Implications for Society. Case Studies on the Influence of Packaging Design and Placement at the Point of Sale
[EN] This work aims to demonstrate that product design and packaging must be aligned with the point of sale and its social purpose.
Manufacturing engineering is responsible for the design, development and improvement of production systems that convert raw materials into finished products. Each product is designed to be sold to numerous potential consumers, so the importance of the stimuli surrounding the product in packaging, and at the point of sale, cannot be underestimated. The environmental, social, and ethical commitments of industrial design (and their implications in manufacturing) are establishing universal principles in a common effort to foster a more harmonious and sustainable society. This work aims to analyse, through eye tracking biometric techniques, the level of saturation of information generated by the concentration of stimuli in packaging and the retail channel, possibly creating a lower level of attention towards the product itself. This research confirms that every product associated with a manufacturing process seeks to respond to a need, so the associated responsibility is significant. This would suggest that designers incorporate knowledge from multiple fields, including marketing strategies, design, research and development, basic knowledge related to production, integration management and communication skills. More than 50% of consumer attention is dedicated to other elements/items that accompany the product, so it is important to consider this in the design phase. The results can be used to improve efficiency in both generating product attention, and stimulus design for the purchasing process.Juárez Varón, D.; Mengual Recuerda, A.; Ferrándiz Bou, S.; Alarcón Valero, F. (2021). Aspects of Industrial Design and Their Implications for Society. Case Studies on the Influence of Packaging Design and Placement at the Point of Sale. Applied Sciences. 11(2):1-16. https://doi.org/10.3390/app11020517S11611
Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding
[EN] Wood-like plastic composites were manufactured with a thermoplastic matrix polymer from renewable resources, i.e. high-density poly(ethylene) from bioethanol and a lignocellulosic filler obtained as a byproduct of the industrial distillation of thyme. The potential manufacturing of these composites by injection molding was studied. For this purpose, an in depth study of the effects of the lignocellulosic loading (comprised between 10 and 50 wt%) on the rheological properties of these composites was carried out by using capillary rheometry and model fitting with the Cross-WLF rheological model. In addition, a side by side comparison of the experimental results and those obtained by simulations with MoldFlow® was provided. In addition, the values of the pressure in the cavity and in the sprue were measured and collected by two selectively mounted pressure sensors and the results were compared with those predicted by MoldFlow® with the inputs provided by the Cross-WLF fitting model. The results showed a remarkable increase in viscosity with increasing lignocellulosic filler content, which has a negative effect on overall processability. This phenomenon specifically intense at low shear rates. However, this phenomenon could be potentially minimized using high shear rates because of the shear thinning effect of pseudoplastic fluids. Both the experimental and simulated results suggest the need of higher pressures to fill the cavity with these WPC, specifically for those with high filler content of up to 50 wt%. The results of the study indicate that melt viscosity is highly linked to the cavity pressure which is the dominant factor determining the quality of the final product in plastic injection molding.This research was supported by the Ministry of Economy and Competitiveness – MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank “Licores Sinc, S.A.” for kindly supplying the thyme wastes.Montanes, N.; Quiles-Carrillo, L.; Ferrándiz Bou, S.; Fenollar, O.; Boronat, T. (2019). Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-019-01388-0SKoivuranta E et al (2017) Improved durability of lignocellulose-polypropylene composites manufactured using twin-screw extrusion. Compos Part A 101:265–272Tufan M et al (2016) Technological and thermal properties of thermoplastic composites filled with heat-treated alder wood. BioResources 11(2):3153–3164Puglia D, Fortunati E, Kenny JM, Editors (2016) Extraction of lignocellulosic materials from waste products. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, Oxford, p 408Huang L et al (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 26:48–58Fabiyi JS et al (2008) Wood plastic composites weathering: visual appearance and chemical changes. Polym Degrad Stab 93(8):1405–1414Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Prot 76(7):1218–1225Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293Bhullar SK, Kaya B, Jun MB-G (2015) Development of bioactive packaging structure using melt electrospinning. J Polym Environ 23(3):416–423Cicala G et al (2016) Investigation on structure and thermomechanical processing of biobased polymer blends. J Polym Environ 25:750–758George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37(24):5421–5431Joseph PV et al (2002) Melt rheological behaviour of short sisal fibre reinforced polypropylene composites. J Thermoplast Compos Mater 15(2):89–114Kalaprasad G et al (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. I. Untreated fibers. J Appl Polym Sci 89(2):432–442Kalaprasad G, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. II. Chemical modification. J Appl Polym Sci 89(2):443–450Kumar RP et al (2000) Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites. Compos Sci Technol 60(9):1737–1751Li T, Wolcott M (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45(4):549–559Li T, Wolcott M (2006) Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46(4):464–473Li TQ, Wolcott MP (2004) Rheology of HDPE-wood composites. I. Steady state shear and extensional flow. Composites Part A 35(3):303–311Mohanty S, Nayak SK (2007) Rheological characterization of jute/HDPE composites. In: Zhang D et al. (eds) Advanced materials and processing Iv, p 279Ou R et al (2014) Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos Sci Technol 93:68–75Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polym Eng Sci 47(10):1634–1642Koszkul J, Nabialek J (2004) Viscosity models in simulation of the filling stage of the injection molding process. J Mater Process Technol 157–158:183–187Mazzanti V, Mollica F (2016) In-process measurements of flow characteristics of wood plastic composites. J Polym Environ 25:1044–1050Montanes N et al (2017) Processing and characterization of environmentally friendly composites from biobased polyethylene and natural fillers from thyme herbs. J Polym Environ 26:1218–1230Shenoy A, Saini D (1984) Rheological models for unified curves for simplified design calculations in polymer processing. Rheologica Acta 23(4):368–377Bagley E (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627Rabinowitsch B (1929) Über die Viskosität und Elastizität von Solen. Z Physik Chem A 145:1–26Cross MM (1965) Rheology of non-newtonian fluids—a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707Carneiro OS, Maia JM (2000) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969Crowson RJ, Folkes MJ, Bright PF (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym Eng Sci 20(14):925–933Goldsmith H (1967) Rheology theory and application, Mason SG (eds) Academic Press, p 85Reig MJ, Segui VJ, Zamanillo JD (2005) Rheological behavior modeling of recycled ABS/PC blends applied to injection molding process. J Polym Eng 25(5):435–457Părpăriţă E et al (2014) Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772Kurt M et al (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30(8):3217–322
Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing
[EN] Purpose This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological conditions with multi-wall carbon nanotube (PLA/MWCNT) and halloysite nanotube (PLA/HNT) composites for possible applications in additive manufacturing processes. Design/methodology/approach PLA/MWCNTs and PLA/HNTs were obtained through fusion in a co-rotating twin-screw extruder. PLA was mixed with different percentages of MWCNTs and HNTs at concentrations of 0.5 Wt.%, 0.75 Wt.% and 1 Wt.%. Differential scanning calorimetry (DSC) and capillary rheometry were used to characterise these products, together with an analysis of the melt flow index (MFI). Findings The DSC data revealed that the nanocomposites had a glass transition temperature T-g = 65 +/- 2 degrees C and a melting temperature T-m = 169 +/- 1 degrees C. The crystallisation temperature of PLA/MWCNTs and PLA/HNTs was between 107 +/- 2 degrees C and 129 degrees C, respectively. The viscosity data of PLA/MWCNTs and PLA/HNTs obtained by capillary rheometry indicated that the viscosity of the materials is the same as that of neat PLA. These results were confirmed by the higher fluidity index in the MFI analysis. Originality/value This paper presents an alternative for the applications of nanocomposites in additive manufacturing processes in FDM systems.Cobos, CM.; Garzón, L.; López-Martínez, J.; Fenollar, O.; Ferrándiz Bou, S. (2019). Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing. Rapid Prototyping Journal. 25(4):738-743. https://doi.org/10.1108/RPJ-11-2018-0289S738743254Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196. doi:10.3139/217.2419Berber, S. Kwon, Y.-K. and Tománek, D. (2000), “Unusually high thermal conductivity of carbon nanotubes”, available at: https://pdfs.semanticscholar.org/6595/44a005ba8d622c272d4bf737f12e26f8c415.pdf (accessed 23 February 2019).Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045Dong, Y., Chaudhary, D., Haroosh, H., & Bickford, T. (2011). Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. Journal of Materials Science, 46(18), 6148-6153. doi:10.1007/s10853-011-5605-6Ferri Azor, J.M., Balart Gimeno, R.A. and Fenollar Gimeno, O. (2017), Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural, Doctoral Thesis, Universitat Politècnica de València, Alcoy.Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131. doi:10.1016/j.eurpolymj.2016.10.045Hamad, K., Kaseem, M., & Deri, F. (2011). Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science, 01(04), 208-214. doi:10.4236/aces.2011.14030Harris, A. M., & Lee, E. C. (2007). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. doi:10.1002/app.27261Kim, S. Y., Shin, K. S., Lee, S. H., Kim, K. W., & Youn, J. R. (2010). Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers and Polymers, 11(7), 1018-1023. doi:10.1007/s12221-010-1018-4Li, T., Turng, L.-S., Gong, S., & Erlacher, K. (2006). Polylactide, nanoclay, and core–shell rubber composites. Polymer Engineering & Science, 46(10), 1419-1427. doi:10.1002/pen.20629López, J., Navarro, R., Gallego, J. M., Parres, F., & Ferrandiz, S. (2009). Analysis weld seam weak in blow molding large parts made of commodity plastics. Engineering Failure Analysis, 16(3), 856-862. doi:10.1016/j.engfailanal.2008.07.007Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003Richard, T. (2008), “Preparación y caracterización de nanocompuestos en base PLA”, Universitat Politècnica de Catalunya. available at: http://upcommons.upc.edu/handle/2099.1/4791 (accessed 26 July 2017).Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3). doi:10.1007/s10965-016-0937-1Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164. doi:10.1016/j.matdes.2017.03.051Suriñach, S., Baro, M.D., Bordas, S., Clavaguera, N. and Clavaguera-mora, M.T. (1992), “La calorimetría diferencial de barrido y su aplicación a la ciencia de materiales”, Vol. 31, available at: http://boletines.secv.es/upload/199231011.pdf (accessed: 26 July 2017).Wu, W., Cao, X., Zhang, Y., & He, G. (2013). Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. Journal of Applied Polymer Science, 130(1), 443-452. doi:10.1002/app.39179Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.00
New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives
[EN] In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.This research was supported by the Spanish State Agency of Research trough the project MAT2017-84909-C2-2-R and Universidad Politecnica de Valencia-GVA through the project "Development".Pavón-Vargas, CP.; Aldas-Carrasco, MF.; López-Martínez, J.; Ferrándiz Bou, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers. 12(2):1-20. https://doi.org/10.3390/polym12020334S120122Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176Our Planet Is Drowning in Plastic Pollution https://www.unenvironment.org/interactive/beat-plastic-pollution/Queiroz, A. U. B., & Collares-Queiroz, F. P. (2009). Innovation and Industrial Trends in Bioplastics. Polymer Reviews, 49(2), 65-78. doi:10.1080/15583720902834759Johnson, M., Tucker, N., Barnes, S., & Kirwan, K. (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22(3), 175-186. doi:10.1016/j.indcrop.2004.08.004Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152Kouparitsas, I. K., Mele, E., & Ronca, S. (2019). Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 11(4), 677. doi:10.3390/polym11040677Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484. doi:10.1039/b820162pWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574Termentzi, A., Fokialakis, N., & Leandros Skaltsounis, A. (2011). Natural Resins and Bioactive Natural Products thereof as Potential Anitimicrobial Agents. Current Pharmaceutical Design, 17(13), 1267-1290. doi:10.2174/138161211795703807Savluchinske-Feio, S., Curto, M. J. M., Gigante, B., & Roseiro, J. C. (2006). Antimicrobial activity of resin acid derivatives. Applied Microbiology and Biotechnology, 72(3), 430-436. doi:10.1007/s00253-006-0517-0Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297-338. doi:10.1016/0079-6700(89)90005-1Huang, W., Diao, K., Tan, X., Lei, F., Jiang, J., Goodman, B. A., … Liu, S. (2019). Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers, 11(6), 969. doi:10.3390/polym11060969Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364-372. doi:10.1016/j.carbpol.2014.09.004Satturwar, P. M., Fulzele, S. V., & Dorle, A. K. (2003). Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 4(4), 434-439. doi:10.1208/pt040455Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dTulloch, A. P. (1980). Beeswax—Composition and Analysis. Bee World, 61(2), 47-62. doi:10.1080/0005772x.1980.11097776Buchwald, R., Breed, M. D., Greenberg, A. R., & Otis, G. (2006). Interspecific variation in beeswax as a biological construction material. Journal of Experimental Biology, 209(20), 3984-3989. doi:10.1242/jeb.02472Morgan, J., Townley, S., Kemble, G., & Smith, R. (2002). Measurement of physical and mechanical properties of beeswax. Materials Science and Technology, 18(4), 463-467. doi:10.1179/026708302225001714Gaillard, Y., Mija, A., Burr, A., Darque-Ceretti, E., Felder, E., & Sbirrazzuoli, N. (2011). Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, 521(1-2), 90-97. doi:10.1016/j.tca.2011.04.010Gaillard, Y., Girard, M., Monge, G., Burr, A., Ceretti, E. D., & Felder, E. (2012). Superplastic behavior of rosin/beeswax blends at room temperature. Journal of Applied Polymer Science, 128(5), 2713-2719. doi:10.1002/app.38333Chang, R., Rohindra, D., Lata, R., Kuboyama, K., & Ougizawa, T. (2018). Development of poly(ε-caprolactone)/pine resin blends: Study of thermal, mechanical, and antimicrobial properties. Polymer Engineering & Science, 59(s2), E32-E41. doi:10.1002/pen.24950Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557Geurtsen, W. (2000). Biocompatibility of Resin-Modified Filling Materials. Critical Reviews in Oral Biology & Medicine, 11(3), 333-355. doi:10.1177/10454411000110030401Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839-843. doi:10.1016/j.apjtm.2016.07.003Weatherall, I. L., & Coombs, B. D. (1992). Skin Color Measurements in Terms of CIELAB Color Space Values. Journal of Investigative Dermatology, 99(4), 468-473. doi:10.1111/1523-1747.ep12616156Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514Liu, G., Wu, G., Chen, J., & Kong, Z. (2016). Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Progress in Organic Coatings, 101, 461-467. doi:10.1016/j.porgcoat.2016.09.019Wong, R. B. K., & Lelievre, J. (1981). Viscoelastic behaviour of wheat starch pastes. Rheologica Acta, 20(3), 299-307. doi:10.1007/bf01678031Costakis, W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. doi:10.1016/j.jeurceramsoc.2016.06.002Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. The Analyst, 88(1053), 906. doi:10.1039/an9638800906Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467-2476. doi:10.1016/j.actbio.2010.02.002Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-yElzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273-280. doi:10.1016/j.applthermaleng.2016.10.085Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226Vasile, C., Stoleru, E., Darie-Niţa, R. N., Dumitriu, R. P., Pamfil, D., & Tarţau, L. (2019). Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers, 11(6), 941. doi:10.3390/polym11060941Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098pFabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.00
- …