35 research outputs found

    Etching with Electron Beam Generated Plasmas

    Get PDF
    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen–argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride (,200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride sSiOxFyd compounds. At low incident ion energies, the Ar–SF6 mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at ,75 eV. Etch rates were independent of the 0.5%–50% duty factors studied in this work

    Etching with Electron Beam Generated Plasmas

    Get PDF
    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen–argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride (,200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride sSiOxFyd compounds. At low incident ion energies, the Ar–SF6 mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at ,75 eV. Etch rates were independent of the 0.5%–50% duty factors studied in this work

    Effect of Plasma Flux Composition on the Nitriding Rate of Stainless Steel

    Get PDF
    The total ion flux and nitriding rate for stainless steel specimens exposed to a modulated electron beam generated argon-nitrogen plasma were measured as a function of distance from the electron beam axis. The total ion flux decreased linearly with distance, but the nitriding rate increased under certain conditions, contrary to other ion flux/nitriding rate comparisons published in the literature. Variation in ion flux composition with distance was explored with a mass spectrometer and energy analyzer as a possible explanation for the anomalous nitriding rate response to ion flux magnitude. A transition in ion flux composition from mostly N2 1 to predominantly N1 ions with increasing distance was observed. Significant differences in molecular and atomic nitrogen ion energy distributions at a negatively biased electrode were also measured. An explanation for nitriding rate dependence based on flux composition and magnitude is proposed
    corecore