9 research outputs found
Non-Markovian effects on non-locality of a qubit-oscillator system
Non-Markovian evolutions are responsible for a wide variety of physically
interesting effects. Here, we study non-locality of the non-classical state of
a system consisting of a qubit and an oscillator exposed to the effects of
non-Markovian evolutions. We find that the different facets of non-Markovianity
affect non-locality in different and non-obvious ways: ranging from pronounced
insensitivity of the Bell function to quite a spectacular evidence of
information kick-back.Comment: 7 pages, 3 figures, RevTeX
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Time-dependent dephasing and quantum transport
The investigation of the phenomenon of dephasing assisted quantum transport, which happens when the presence of dephasing benefits the efficiency of this process, has been mainly focused on Markovian scenarios associated with constant and positive dephasing rates in their respective Lindblad master equations. What happens if we consider a more general framework, where time-dependent dephasing rates are allowed, thereby, permitting the possibility of non-Markovian scenarios? Does dephasing-assisted transport still manifest for non-Markovian dephasing? Here, we address these open questions in a setup of coupled two-level systems. Our results show that the manifestation of non-Markovian dephasing-assisted transport depends on the way in which the incoherent energy sources are locally coupled to the chain. This is illustrated with two different configurations, namely non-symmetric and symmetric. Specifically, we verify that non-Markovian dephasing-assisted transport manifested only in the non-symmetric configuration. This allows us to draw a parallel with the conditions in which time-independent Markovian dephasing-assisted transport manifests. Finally, we find similar results by considering a controllable and experimentally implementable system, which highlights the significance of our findings for quantum technologies