750 research outputs found

    Clinical longevity of direct and indirect posterior resin composite restorations: an updated systematic review and meta-analysis.

    Get PDF
    Objectives: To answer the PICO(S) question: Is there a difference in clinical longevity between direct and indirect resin composite restorations placed on permanent posterior teeth? Data: Randomized controlled clinical trials (RCTs) investigating direct and indirect resin composite restorations in posterior permanent teeth were considered. Sources: Several electronic databases were searched, with no language or date restrictions. The revised Cochrane Collaboration’s tool for assessing risk of bias (RoB-2) was used to analyze the studies; meta-analyses were run and the certainty of evidence was assessed by the GRADE tool. A subgroup meta-analysis was performed for resin composite restorations placed on posterior worn dentition. Study selection: Twenty-three articles were included in qualitative synthesis, while 8 studies were used for meta- analyses. According to the RoB-2 tool, 5 studies were ranked as “low risk”, 7 had “some concerns”, while 11 papers were rated as “high risk” of bias. There were no statistically significant differences in short-term (p = 0.27; RR=1.54, 95% CI [0.72, 3.33]), medium-term (p = 0.27; RR=1.87, 95% CI [0.61, 5.72]) and long-term longevity (p = 0.86; RR=0.95, 95% CI [0.57, 1.59]). The choice of restorative technique had no influence on short-term survival of resin composite restorations placed on worn dentition (p = 0.13; RR=0.46, 95% CI [0.17, 1.25]). The certainty of evidence was rated as “very low”. Conclusions: Direct and indirect resin composite restorations may show similar clinical longevity in posterior region, regardless of the observation period or substrate (wear-affected and non-affected dentition). The very low quality of evidence suggests that more long-term RCTs are needed to confirm our results

    Actin binding proteins:their ups and downs in metastatic life

    Get PDF
    In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins. © 2013 Landes Bioscience

    Exploring the Free Energy Landscape: From Dynamics to Networks and Back

    Get PDF
    The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers are, how the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times or rate constants, and the hierarchical relationship among basins, complete the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, the dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press

    Immunogenic Eimeria tenella Glycosylphosphatidylinositol-Anchored Surface Antigens (SAGs) Induce Inflammatory Responses in Avian Macrophages

    Get PDF
    , but the ability of these proteins to stimulate immune responses in the chicken is unknown. infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity. pathogenicity associated with the endogenous second generation stages

    A Conserved Arginine-Rich Motif within the Hypervariable N-Domain of Drosophila Centromeric Histone H3 (CenH3CID) Mediates BubR1 Recruitment

    Get PDF
    Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level.Here, we report on the contribution of Drosophila CenH3(CID) to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3(CID) (NCenH3(CID)), as tethering NCenH3(CID) to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3(CID) might also be involved in interactions with kinetochore components.These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment

    Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene

    Get PDF
    Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, P(meta)=2.15 × 10(−09)), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10(−06)), and further show it is an eQTL for FNDC1 (P=9.3 × 10(−05)). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM
    corecore