2 research outputs found
Long Electrical Stability on Dual Acceptor p-Type ZnO:Ag,N Thin Films
p-type Ag-N dual acceptor doped ZnO thin films with long electrical stability were deposited by DC magnetron reactive co-sputtering technique. After deposition, the films were annealed at 400 °C for one hour in a nitrogen-controlled atmosphere. The deposited films were amorphous. However, after annealing, they crystallize in the typical hexagonal wurtzite structure of ZnO. The Ag-N dual acceptors were incorporated substitutionally in the structure of zinc oxide, and achieving that; the three samples presented the p-type conductivity in the ZnO. Initial electrical properties showed a low resistivity of from 1 to 10â3 Ω·cm, Hall mobility of tens cm2/V·s, and a hole concentration from 1017 to 1019 cmâ3. The electrical stability analysis reveals that the p-type conductivity of the ZnO:Ag,N films is very stable and does not revert to n-type, even after 36 months of aging. These results reveal the feasibility of using these films for applications in short-wavelength or transparent optoelectronic devices
Growth of Nanocolumnar TiO<sub>2</sub> Bilayer by Direct Current Reactive Magnetron Sputtering in Glancing-Angle Deposition Configuration for High-Quality Electron Transport Layer
The electron transport layer (ETL) plays a crucial role in solar cell technology, particularly in perovskite solar cells (PSCs), where nanostructured TiO2 films have been investigated as superior ETLs compared to compact TiO2. In this study, we explored the nanocolumnar growth of TiO2 in the anatase phase for bilayer thin films by DC reactive magnetron sputtering (MS) technique and glancing-angle deposition (GLAD). For the growth of the compact TiO2 layer, it was found that the crystalline quality of the films is strongly dependent on the sputtering power, and the samples deposited at 120 and 140 W are those with the best crystalline quality. However, for the nanocolumnar layer, the reactive atmosphere composition determined the best crystalline properties. By optimizing the growth parameters, the formation of TiO2 nanocolumns with a cross-sectional diameter ranging from 50 to 75 nm was achieved. The average thickness of the films exceeded 12.71 ± 0.5 ”m. All nanostructured films were grown at a constant GLAD angle of 70°, and after deposition, the measured inclination angle of the nanocolumns is very close to this, having values between 68 and 80°. Furthermore, a correlation was observed between the quality of the initial layer and the enhanced growth of the TiO2 nanocolumns. All bilayer films are highly transparent, allowing light to pass through up to 90%, and present a band gap with values between 3.7 and 3.8 eV. This article offers the experimental parameters for the fabrication of a nanocolumnar TiO2 using the magnetron sputtering technique and the glancing-angle deposition configuration