3 research outputs found

    High-resolution phonon energy shift measurements with the inelastic neutron spin echo technique

    No full text
    The energy resolution of the conventional way of measuring a small change in a phonon dispersion curve using neutron scattering is restricted by the relatively coarse intrinsic resolution ellipsoid of the neutron triple-axis spectrometer (TAS). By implementing inelastic neutron spin echo on the host TAS using the Larmor precession of the neutron spin, the energy resolution of such measurements can be further improved without reducing the resolution ellipsoid. Measurements of the temperature-dependent phonon energy change are demonstrated using superconducting magnetic Wollaston prisms at the HB-1 instrument of the High-Flux Isotope Reactor at Oak Ridge National Laboratory, and the achievable resolution is <10 µeV.RST/Fundamental Aspects of Materials and Energ

    High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms

    No full text
    The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. The experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. We conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup can be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. The use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.RST/Fundamental Aspects of Materials and Energ
    corecore