44,689 research outputs found

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques

    Get PDF
    Background: Tomato brown rugose fruit virus (ToBRFV) is a highly infectious tobamovirus that causes severe disease in tomato (Solanum lycopersicum L.) crops. In Italy, the first ToBRFV outbreak occurred in 2018 in several provinces of the Sicily region. ToBRFV outbreak represents a serious threat for tomato crops in Italy and the Mediterranean Basin. Methods: Molecular and biological characterisation of the Sicilian ToBRFV ToB-SIC01/19 isolate was performed, and a sensitive and specific Real-time RT-PCR TaqMan minor groove binder probe method was developed to detect ToBRFV in infected plants and seeds. Moreover, four different sample preparation procedures (immunocapture, total RNA extraction, direct crude extract and leaf-disk crude extract) were evaluated. Results: The Sicilian isolate ToB-SIC01/19 (6,391 nt) showed a strong sequence identity with the isolates TBRFV-P12-3H and TBRFV-P12-3G from Germany, Tom1-Jo from Jordan and TBRFV-IL from Israel. The ToB-SIC01/19 isolate was successfully transmitted by mechanical inoculations in S. lycopersicum L. and Capsicum annuum L., but no transmission occurred in S. melongena L. The developed real-time RT-PCR, based on the use of a primer set designed on conserved sequences in the open reading frames3, enabled a reliable quantitative detection. This method allowed clear discrimination of ToBRFV from other viruses belonging to the genus Tobamovirus, minimising false-negative results. Using immunocapture and total RNA extraction procedures, the real-time RT-PCR and end-point RT-PCR gave the same comparable results. Using direct crude extracts and leaf-disk crude extracts, the end-point RT-PCR was unable to provide a reliable result. This developed highly specific and sensitive real-time RT-PCR assay will be a particularly valuable tool for early ToBRFV diagnosis, optimising procedures in terms of costs and time

    Pyroxenes and olivines in crystalline rocks from ocean of storms

    Get PDF
    Determination of petrology and deformational state of pyroxenes and olivines in lunar rocks returned by Apollo 12 fligh

    PMS42 CONTENT VALIDITY AND HEALTH CARE SYSTEMS: A CASE-STUDY

    Get PDF

    Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow

    Get PDF
    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This “depth sectioning method” retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 °C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers

    Possible large-N fixed-points and naturalness for O(N) scalar fields

    Full text link
    We try to use scale-invariance and the large-N limit to find a non-trivial 4d O(N) scalar field model with controlled UV behavior and naturally light scalar excitations. The principle is to fix interactions by requiring the effective action for space-time dependent background fields to be finite and scale-invariant when regulators are removed. We find a line of non-trivial UV fixed-points in the large-N limit, parameterized by a dimensionless coupling. They reduce to classical la phi^4 theory when hbar -> 0. For hbar non-zero, neither action nor measure is scale-invariant, but the effective action is. Scale invariance makes it natural to set a mass deformation to zero. The model has phases where O(N) invariance is unbroken or spontaneously broken. Masses of the lightest excitations above the unbroken vacuum are found. We derive a non-linear equation for oscillations about the broken vacuum. The interaction potential is shown to have a locality property at large-N. In 3d, our construction reduces to the line of large-N fixed-points in |phi|^6 theory.Comment: 23 page
    corecore