6 research outputs found

    Electrostatic polarization fields trigger glioblastoma stem cell differentiation

    Get PDF
    Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM

    Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    No full text
    Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn), Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cance

    Amphibian declines in the twenty-first century: why we need assisted reproductive technologies

    No full text
    Each amphibian species is evolutionarily distinct, having developed highly specialized and diverse reproductive strategies in both terrestrial and aquatic environments. These unique reproductive patterns and mechanisms, key to species propagation, have only been explored in a limited number of laboratory models. Although the development of applied reproductive technologies for amphibians has proven useful for a few threatened species, the real benefit of this technology has been new insights into the reproductive adaptations, behavior, endocrinology, and physiological mechanisms that have evolved over millions of years. As the basic fundamental database on amphibian reproductive physiology has grown, so has the applied benefit for species conservation. In particular, technologies such as non-invasive fecal and urinary hormone assays, hormone treatments for induced breeding or gamete collection, in vitro fertilization, and the ability to establish genome resource banks have all played important roles in monitoring or managing small populations of captive species. Amphibians have the ability to produce a large excess of germplasm (up to 10,000 ovulated eggs in a single reproductive event) that if not collected and preserved, would represent a wasted valuable resource. We discuss the current state of knowledge in assisted reproductive technologies for amphibians and why their extinction crisis means these available tools can no longer be implemented as small-scale, last-ditch efforts. The reproductive technologies must be established early as a key component of large-scale species recovery
    corecore