2 research outputs found
Aminoquinolones and Their Benzoquinone Dimer Hybrids as Modulators of Prion Protein Conversion
Prion Diseases or Transmissible Spongiform Encephalopathies are neurodegenerative conditions associated with a long incubation period and progressive clinical evolution, leading to death. Their pathogenesis is characterized by conformational changes of the cellular prion protein—PrPC—in its infectious isoform—PrPSc—which can form polymeric aggregates that precipitate in brain tissues. Currently, there are no effective treatments for these diseases. The 2,5-diamino-1,4-benzoquinone structure is associated with an anti-prion profile and, considering the biodynamic properties associated with 4-quinolones, in this work, 6-amino-4-quinolones derivatives and their respective benzoquinone dimeric hybrids were synthesized and had their bioactive profile evaluated through their ability to prevent prion conversion. Two hybrids, namely, 2,5-dichloro-3,6-bis((3-carboxy-1-pentyl-4-quinolone-6-yl)amino)-1,4-benzoquinone (8e) and 2,5-dichloro-3,6-bis((1-benzyl-3-carboxy-4-quinolone-6-yl)amino)-1,4-benzoquinone (8f), stood out for their prion conversion inhibition ability, affecting the fibrillation process in both the kinetics—with a shortening of the lag phase—and thermodynamics and their ability to inhibit the formation of protein aggregates without significant cytotoxicity at ten micromolar
Naphthoquinone-Quinolone Hybrids with Antitumor Effects on Breast Cancer Cell Lines—From the Synthesis to 3D-Cell Culture Effects
Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy