7 research outputs found

    Deep Convolutional Autoencoders as Generic Feature Extractors in Seismological Applications

    Full text link
    The idea of using a deep autoencoder to encode seismic waveform features and then use them in different seismological applications is appealing. In this paper, we designed tests to evaluate this idea of using autoencoders as feature extractors for different seismological applications, such as event discrimination (i.e., earthquake vs. noise waveforms, earthquake vs. explosion waveforms, and phase picking). These tests involve training an autoencoder, either undercomplete or overcomplete, on a large amount of earthquake waveforms, and then using the trained encoder as a feature extractor with subsequent application layers (either a fully connected layer, or a convolutional layer plus a fully connected layer) to make the decision. By comparing the performance of these newly designed models against the baseline models trained from scratch, we conclude that the autoencoder feature extractor approach may only perform well under certain conditions such as when the target problems require features to be similar to the autoencoder encoded features, when a relatively small amount of training data is available, and when certain model structures and training strategies are utilized. The model structure that works best in all these tests is an overcomplete autoencoder with a convolutional layer and a fully connected layer to make the estimation

    Predicting Wind-Driven Spatial Deposition through Simulated Color Images using Deep Autoencoders

    Full text link
    For centuries, scientists have observed nature to understand the laws that govern the physical world. The traditional process of turning observations into physical understanding is slow. Imperfect models are constructed and tested to explain relationships in data. Powerful new algorithms can enable computers to learn physics by observing images and videos. Inspired by this idea, instead of training machine learning models using physical quantities, we used images, that is, pixel information. For this work, and as a proof of concept, the physics of interest are wind-driven spatial patterns. These phenomena include features in Aeolian dunes and volcanic ash deposition, wildfire smoke, and air pollution plumes. We use computer model simulations of spatial deposition patterns to approximate images from a hypothetical imaging device whose outputs are red, green, and blue (RGB) color images with channel values ranging from 0 to 255. In this paper, we explore deep convolutional neural network-based autoencoders to exploit relationships in wind-driven spatial patterns, which commonly occur in geosciences, and reduce their dimensionality. Reducing the data dimension size with an encoder enables training deep, fully connected neural network models linking geographic and meteorological scalar input quantities to the encoded space. Once this is achieved, full spatial patterns are reconstructed using the decoder. We demonstrate this approach on images of spatial deposition from a pollution source, where the encoder compresses the dimensionality to 0.02% of the original size, and the full predictive model performance on test data achieves an accuracy of 92%.Comment: 13 pages, 8 figure
    corecore