102 research outputs found
Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics
Heteroplasmy, multiple variants of mitochondrial DNA (mtDNA) in the same cytoplasm, may be naturally generated by mutations but is counteracted by a genetic mtDNA bottleneck during oocyte development. Engineered heteroplasmic mice with nonpathological mtDNA variants reveal a nonrandom tissue-specific mtDNA segregation pattern, with few tissues that do not show segregation. The driving force for this dynamic complex pattern has remained unexplained for decades, challenging our understanding of this fundamental biological problem and hindering clinical planning for inherited diseases. Here, we demonstrate that the nonrandom mtDNA segregation is an intracellular process based on organelle selection. This cell type-specific decision arises jointly from the impact of mtDNA haplotypes on the oxidative phosphorylation (OXPHOS) system and the cell metabolic requirements and is strongly sensitive to the nuclear context and to environmental cues
The ASAS-SN Bright Supernova Catalog I: 2013-2014
We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensive catalog of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses most previously existing biases. In particular, ASAS-SN systematically finds supernovae closer to the centers of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. This is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team
A crowdsourcing database for the copy-number variation of the spanish population
Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)
Multi-Omics Integration Highlights the Role of Ubiquitination in CCl4-Induced Liver Fibrosis
Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in chronic liver disease. Ubiquitination is a post-translational modification that is crucial for a plethora of physiological processes. Even though the ubiquitin system has been implicated in several human diseases, the role of ubiquitination in liver fibrosis remains poorly understood. Here, multi-omics approaches were used to address this. Untargeted metabolomics showed that carbon tetrachloride (CCl4)-induced liver fibrosis promotes changes in the hepatic metabolome, specifically in glycerophospholipids and sphingolipids. Gene ontology analysis of public deposited gene array-based data and validation in our mouse model showed that the biological process “protein polyubiquitination” is enriched after CCl4-induced liver fibrosis. Finally, by using transgenic mice expressing biotinylated ubiquitin (bioUb mice), the ubiquitinated proteome was isolated and characterized by mass spectrometry in order to unravel the hepatic ubiquitinated proteome fingerprint in CCl4-induced liver fibrosis. Under these conditions, ubiquitination appears to be involved in the regulation of cell death and survival, cell function, lipid metabolism, and DNA repair. Finally, ubiquitination of proliferating cell nuclear antigen (PCNA) is induced during CCl4-induced liver fibrosis and associated with the DNA damage response (DDR). Overall, hepatic ubiquitome profiling can highlight new therapeutic targets for the clinical management of liver fibrosis.This work was supported by grants from Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C.), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C.), Ministerio de Ciencia, Innovación y Universidades MICINN: SAF2017-87301-R, SAF2017-88041-R, RTI2018-096759-A-100 and SAF2016-76898-P integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación, cofinanciado con Fondos FEDER (to M.L.M.-C., J.M.M., T.C.D. and U.M. respectively); AECC Bizkaia (M.S.-M.); Asociación Española contra el Cáncer (T.C.D.), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M., J.M.B., M.A.A., J.J.G.M.), La Caixa Foundation Program (to M.L.M.), 2018 BBVA Foundation Grants for Scientific Research Teams (to M.L.M.-C.). This research was also funded by the CIBERehd (EHD15PI05/2016) and “Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III”, Spain (PI16/00598 and PI19/00819, co-funded by European Regional Development Fund/European Social Fund, “Investing in your future”); Spanish Ministry of Economy, Industry and Competitiveness (SAF2016-75197-R); “Junta de Castilla y Leon” (SA063P17); AECC Scientific Foundation (2017/2020), Spain; “Centro Internacional sobre el Envejecimiento” (OLD-HEPAMARKER, 0348_CIE_6_E), Spain; University of Salamanca Foundation, Spain (PC-TCUE18-20_051), and Fundació Marato TV3 (Ref. 201916-31), Spain (to J.J.G.M.). The UPV/EHU Lab and the Proteomics Platform are members of Proteored, PRB3 and is supported by grant PT17/0019, of the PE I + D + i 2013-2016, funded by ISCIII and ERDF. Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644)
Nationwide genetic analysis of more than 600 families with inherited eye diseases in Argentina
This study corresponds to the first large-scale genetic analysis of inherited eye diseases (IED) in Argentina and describes the comprehensive genetic profile of a large cohort of patients. Medical records of 22 ophthalmology and genetics services throughout 13 Argentinian provinces were analyzed retrospectively. Patients with a clinical diagnosis of an ophthalmic genetic disease and a history of genetic testing were included. Medical, ophthalmological and family history was collected. A total of 773 patients from 637 families were included, with 98% having inherited retinal disease. The most common phenotype was retinitis pigmentosa (RP, 62%). Causative variants were detected in 379 (59%) patients. USH2A, RPGR, and ABCA4 were the most common disease-associated genes. USH2A was the most frequent gene associated with RP, RDH12 early-onset severe retinal dystrophy, ABCA4 Stargardt disease, PROM1 cone-rod dystrophy, and BEST1 macular dystrophy. The most frequent variants were RPGR c.1345 C > T, p.(Arg449*) and USH2A c.15089 C > A, p.(Ser5030*). The study revealed 156/448 (35%) previously unreported pathogenic/likely pathogenic variants and 8 possible founder mutations. We present the genetic landscape of IED in Argentina and the largest cohort in South America. This data will serve as a reference for future genetic studies, aid diagnosis, inform counseling, and assist in addressing the largely unmet need for clinical trials to be conducted in the region
Key Factors Associated With Pulmonary Sequelae in the Follow-Up of Critically Ill COVID-19 Patients
Introduction: Critical COVID-19 survivors have a high risk of respiratory sequelae. Therefore, we aimed to identify key factors associated with altered lung function and CT scan abnormalities at a follow-up visit in a cohort of critical COVID-19 survivors. Methods: Multicenter ambispective observational study in 52 Spanish intensive care units. Up to 1327 PCR-confirmed critical COVID-19 patients had sociodemographic, anthropometric, comorbidity and lifestyle characteristics collected at hospital admission; clinical and biological parameters throughout hospital stay; and, lung function and CT scan at a follow-up visit. Results: The median [p25–p75] time from discharge to follow-up was 3.57 [2.77–4.92] months. Median age was 60 [53–67] years, 27.8% women. The mean (SD) percentage of predicted diffusing lung capacity for carbon monoxide (DLCO) at follow-up was 72.02 (18.33)% predicted, with 66% of patients having DLCO < 80% and 24% having DLCO < 60%. CT scan showed persistent pulmonary infiltrates, fibrotic lesions, and emphysema in 33%, 25% and 6% of patients, respectively. Key variables associated with DLCO < 60% were chronic lung disease (CLD) (OR: 1.86 (1.18–2.92)), duration of invasive mechanical ventilation (IMV) (OR: 1.56 (1.37–1.77)), age (OR [per-1-SD] (95%CI): 1.39 (1.18–1.63)), urea (OR: 1.16 (0.97–1.39)) and estimated glomerular filtration rate at ICU admission (OR: 0.88 (0.73–1.06)). Bacterial pneumonia (1.62 (1.11–2.35)) and duration of ventilation (NIMV (1.23 (1.06–1.42), IMV (1.21 (1.01–1.45)) and prone positioning (1.17 (0.98–1.39)) were associated with fibrotic lesions. Conclusion: Age and CLD, reflecting patients’ baseline vulnerability, and markers of COVID-19 severity, such as duration of IMV and renal failure, were key factors associated with impaired DLCO and CT abnormalities
The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V
The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the
first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises
three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black
Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains
extensive targeting information for the two multi-object spectroscopy programs
(MWM and BHM), including input catalogs and selection functions for their
numerous scientific objectives. We describe the production of the targeting
databases and their calibration- and scientifically-focused components. DR18
also includes ~25,000 new SDSS spectra and supplemental information for X-ray
sources identified by eROSITA in its eFEDS field. We present updates to some of
the SDSS software pipelines and preview changes anticipated for DR19. We also
describe three value-added catalogs (VACs) based on SDSS-IV data that have been
published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ
The eighteenth data release of the Sloan Digital Sky Surveys : targeting and first spectra from SDSS-V
The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains extensive targeting information for the two multi-object spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration- and scientifically-focused components. DR18 also includes ~25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Publisher PDFPeer reviewe
- …