238 research outputs found
Giant magnetic anisotropy at nanoscale: overcoming the superparamagnetic limit
It has been recently observed for palladium and gold nanoparticles, that the
magnetic moment at constant applied field does not change with temperature over
the range comprised between 5 and 300 K. These samples with size smaller than
2.5 nm exhibit remanence up to room temperature. The permanent magnetism for so
small samples up to so high temperatures has been explained as due to blocking
of local magnetic moment by giant magnetic anisotropies. In this report we
show, by analysing the anisotropy of thiol capped gold films, that the orbital
momentum induced at the surface conduction electrons is crucial to understand
the observed giant anisotropy. The orbital motion is driven by localised charge
and/or spin through spin orbit interaction, that reaches extremely high values
at the surfaces. The induced orbital moment gives rise to an effective field of
the order of 103 T that is responsible of the giant anisotropy.Comment: 15 pages, 2 figures, submitted to PR
Correlation between magnetic and transport properties in nanocrystalline Fe thin films: A grain-boundary magnetic disorder effect
We report on transport and magnetic measurements of islanded Fe(110) thin films. The electrical resistivity exhibits an anomalous increase at low temperatures, which disappears under the action of a magnetic field. Since such an anomaly completely disappears under the action of a magnetic field, it is inferred that it originates from spin-dependent scattering. We interpret the strong changes in the spin-dependent scattering in our films to be due to a low-temperature spin freezing of the island boundary magnetic regions that impedes ferromagnetic exchange between islands. A consequence of this magnetic behavior is the random arrangement of the individual magnetization, determined by the magnetocrystalline anisotropy of each island, resulting in an increase of the resistivity below the freezing temperature.Z.S. and J.L.M. acknowledge the Comunidad de Madrid for financial support. Work was performed under the financial support of the Comunidad de Madrid and the Spanish Commission of Science and Technology.Peer reviewe
Surface plasmon resonance of capped Au nanoparticles
In this Rapid Communication we show the relationship between surface plasmon resonance damping and the intensity of surface bonding for capped Au nanoparticles, (NPs). Up to now the influence of capping has been included as a phenomenological modification of the scattering constant. It is indicated here that the effective NP size is the parameter mainly affected by surface bonding. Experimental results in different Au-thiol NPs are shown to be in excellent agreement with the expression we propose for damping. Moreover, according to our model the resonance profile gives a deep insight of the interface bonding strength
Synthesis and characterization of FePt/Au core-shell nanoparticles
In this work, the structural and magnetic properties of the gold- coated FePt nanoparticles synthesized from high- temperature solution phase are presented. The amount of gold was optimized to obtain most of the FePt particles coated. The particle diameter increases from 4 to 10 nm as observed by TEM. The magnetic properties are largely affected by the coating. At low temperature, the coercive. field Hc of the coated nanoparticles decreases about three times respect to the uncoated and the blocking temperature reduces to the half. The changes of the magnetic behavior are discussed in terms of the effect of the gold atoms at the FePt core surface
Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin
Background
Human pigmentation is a polygenic quantitative trait with high heritability. In addition to genetic factors, it has been shown that pigmentation can be modulated by oestrogens and androgens via up- or down-regulation of melanin synthesis. Our aim was to identify possible sex differences in pigmentation phenotype as well as in melanoma association in a melanoma case-control population of Spanish origin.
Methods
Five hundred and ninety-nine females (316 melanoma cases and 283 controls) and 458 males (234 melanoma cases and 224 controls) were analysed. We genotyped 363 polymorphisms (single nucleotide polymorphisms (SNPs)) from 65 pigmentation gene regions.
Results
When samples were stratified by sex, we observed more SNPs associated with dark pigmentation and good sun tolerance in females than in males (107 versus 75; P = 2.32 × 10−6), who were instead associated with light pigmentation and poor sun tolerance. Furthermore, six SNPs in TYR, SILV/CDK2, GPR143, and F2RL1 showed strong differences in melanoma risk by sex (P < 0.01).
Conclusions
We demonstrate that these genetic variants are important for pigmentation as well as for melanoma risk, and also provide suggestive evidence for potential differences in genetic effects by sex.We thank the Madrid College of Lawyers and all patients from the different
contributing Hospitals. We would like to thank Tais Moreno, M. Rosario Alonso,
and Guillermo Pita for their expert technical assistance with Illumina genotyping,
performed at the Spanish National Genotyping Centre (CeGen, Madrid).
MI-V is funded by the “Ministry of Health Carlos III” under a Sara Borrell
contract (CD15/00153). ML-C is funded by a Prometeo contract (2015/005).
SSO is funded by the “ Ministry of Education, Culture and Sport” under a FPU
fellowship (FPU13/04976). GR is funded by the “Ministry of Health Carlos III”
under a Miquel Servet II contract (CPII14-00013).
This work has also been partly funded by a research project from the
Spanish Ministry of Economy and Competitiveness (CGL2014-58526-P),
whose principal investigator is S
Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area
Microplastic (MP) ingestion, along with accumulated plasticizers such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis (2-ethylhexyl) phthalate (DEHP), were quantified in bivalves, fish, and holothurians collected from a coastal pristine area at the western Mediterranean Sea. MP ingestion in sediment-feeders holothurians (mean value 12.67 ± 7.31 MPs/individual) was statistically higher than ingestion in bivalves and fish (mean 4.83 ± 5.35 and 3 ± 4.44 MPs/individual, respectively). The main ingested polymers were polyethylene, polypropylene, and polystyrene. The levels of BPS, BPF, and DEHP were highest in bivalves' soft tissue; BPA and DBP had the highest levels in the holothurians’ muscle. In addition, the levels of all plasticizers assessed were lowest in fish muscle; only BPA levels in fish were higher than in bivalves, with intermediate values between those of bivalves and holothurians. This study provides data on exposure to MPs and plasticizers of different species inhabiting Cabrera Marine Protected Area (MPA) and highlights the differences in MP ingestion and levels of plasticizers between species with different ecological characteristics and feeding strategies.En prensa3,39
Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes
MicroRNA-122 (miR-122) is abundant in the liver and involved in lipid homeostasis, but its relevance to the long-term risk of developing metabolic disorders is unknown. We therefore measured circulating miR-122 in the prospective population-based Bruneck Study (n = 810; survey year 1995). Circulating miR-122 was associated with prevalent insulin resistance, obesity, metabolic syndrome, type 2 diabetes, and an adverse lipid profile. Among 92 plasma proteins and 135 lipid subspecies quantified with mass spectrometry, it correlated inversely with zinc-α-2-glycoprotein and positively with afamin, complement factor H, VLDL-associated apolipoproteins, and lipid subspecies containing monounsaturated and saturated fatty acids. Proteomics analysis of livers from antagomiR-122–treated mice revealed novel regulators of hepatic lipid metabolism that are responsive to miR-122 inhibition. In the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT, n = 155), 12-month atorvastatin reduced circulating miR-122. A similar response to atorvastatin was observed in mice and cultured murine hepatocytes. Over up to 15 years of follow-up in the Bruneck Study, multivariable adjusted risk ratios per one-SD higher log miR-122 were 1.60 (95% CI 1.30–1.96; P < 0.001) for metabolic syndrome and 1.37 (1.03–1.82; P = 0.021) for type 2 diabetes. In conclusion, circulating miR-122 is strongly associated with the risk of developing metabolic syndrome and type 2 diabetes in the general population
Magnetic properties of ZnO nanoparticles
[EN] We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles (∿10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior. © 2007 American Chemical Society.This work has been supported by the Spanish Ministry of Education and Science (project NAN2004-09125-C07-05)
- …