21,456 research outputs found
Continuous melting through a hexatic phase in confined bilayer water
Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems
Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane
Indexación: Scopus.This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.http://ref.scielo.org/shz7t
A family of complex potentials with real spectrum
We consider a two-parameter non hermitean quantum-mechanical hamiltonian that
is invariant under the combined effects of parity and time reversal
transformation. Numerical investigation shows that for some values of the
potential parameters the hamiltonian operator supports real eigenvalues and
localized eigenfunctions. In contrast with other PT symmetric models, which
require special integration paths in the complex plane, our model is integrable
along a line parallel to the real axis.Comment: Six figures and four table
Structure of the Vacuum in Deformed Supersymmetric Chiral Models
We analyze the vacuum structure of N=1/2 chiral supersymmetric theories in
deformed superspace. In particular we study O'Raifeartaigh models with
C-deformed superpotentials and canonical and non-canonical deformed Kahler
potentials. We find conditions under which the vacuum configurations are
affected by the deformations.Comment: 15 pages, minor corrections. Version to appear in JHE
Open-charm meson spectroscopy
We present a theoretical framework that accounts for the new and
mesons measured in the open-charm sector. These resonances are
properly described if considered as a mixture of conventional wave
quark-antiquark states and four-quark components. The narrowest states are
basically wave quark-antiquark mesons, while the dominantly four-quark
states are shifted above the corresponding two-meson threshold, being broad
resonances. We study the electromagnetic decay widths as basic tools to
scrutiny their nature. The proposed explanation incorporates in a natural way
the most recently discovered mesons in charmonium spectroscopy.Comment: 15 pages, 5 tables. Accepted for publication in Phys. Rev.
Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection
Indexación: Scopus.We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin.http://genomea.asm.org/content/5/20/e00379-17.ful
Mass and width of the resonance in nuclei
We calculated the mass and width of the resonance inside nuclei within a
nucleon- model by including the self-energy of the in the
propagator. We found that in the nuclear medium the width of the
is increased by one order of magnitude while its mass changes only by a few
MeV. This broadening of the width of the resonance embedded in nuclei is
consistent with the experimental observations so that the can be
understood as a resonance. Thus, given the freedom between either
isospin 0 or isospin 2 for the , our results give weigth to the isospin-2
assignment.Comment: 14 pages, RevteX type, 2 eps figures. To be published in Phys. Rev. C
(September
PT-symmetry broken by point-group symmetry
We discuss a PT-symmetric Hamiltonian with complex eigenvalues. It is based
on the dimensionless Schr\"{o}dinger equation for a particle in a square box
with the PT-symmetric potential . Perturbation theory clearly
shows that some of the eigenvalues are complex for sufficiently small values of
. Point-group symmetry proves useful to guess if some of the eigenvalues
may already be complex for all values of the coupling constant. We confirm
those conclusions by means of an accurate numerical calculation based on the
diagonalization method. On the other hand, the Schr\"odinger equation with the
potential exhibits real eigenvalues for sufficiently small
values of . Point group symmetry suggests that PT-symmetry may be broken
in the former case and unbroken in the latter one
Does the quark cluster model predict any isospin two dibaryon resonance?
We analyze the possible existence of a resonance in the channel
with isospin two by means of nucleon- interactions based on the
constituent quark model. We solve the bound state and the scattering problem
using two different potentials, a local and a non-local one. The non-local
potential results to be the more attractive, although not enough to generate
the experimentally predicted resonance.Comment: 9 pages in Latex (revtex), 2 eps figures available under reques
Resonances for symmetric two-barrier potentials
We describe a method for the accurate calculation of bound-state and
resonance energies for one-dimensional potentials. We calculate the shape
resonances for symmetric two-barrier potentials and compare them with those
coming from the Siegert approximation, the complex scaling method and the
box-stabilization method. A comparison of the Breit-Wigner profile and the
transmission coefficient about its maximum illustrates that the agreement is
better the sharper the resonance
- …