9 research outputs found

    Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids

    No full text
    Propolis is a natural product obtained from hives. Its chemical composition varies depending on the flora of its surroundings, but nevertheless, common for all types of propolis, they all exhibit remarkable biological activities. The aim of this study was to investigate the chemical composition and antimicrobial activity of a novel Spanish Ethanolic Extract of Propolis (SEEP). It was found that this new SEEP contains high amounts of polyphenols (205 ± 34 mg GAE/g), with unusually more than half of this of the flavonoid class (127 ± 19 mg QE/g). Moreover, a detailed analysis of its chemical composition revealed the presence of olive oil compounds (Vanillic acid, 1-Acetoxypinoresinol, p-HPEA-EA and 3,4-DHPEA-EDA) never detected before in propolis samples. Additionally, relatively high amounts of ferulic acid and quercetin were distinguished, both known for their important therapeutic benefits. Regarding the antimicrobial properties of SEEP, the minimal inhibitory and bactericidal concentrations (MIC and MBC) against Staphylococcus epidermidis strains were found at the concentrations of 240 and 480 µg/mL, respectively. Importantly, subinhibitory concentrations were also found to significantly decrease bacterial growth. Therefore, the results presented here uncover a new type of propolis rich in flavonoids with promising potential uses in different areas of human health

    Antibacterial and Antibiofilm Activity of Carvacrol against Oral Pathogenic Bacteria

    No full text
    Faced with the current situation of high rates of microbial resistance, together with the scarcity of new antibiotics, it is necessary to search for and identify new antimicrobials, preferably natural, to alleviate this situation. The aim of this work was to evaluate the antibacterial activity of carvacrol (CAR), a phenolic compound of essential oils, against pathogenic microorganisms causing oral infections, such as Streptococcus mutans and S. sanguinis, never evaluated before. The minimum inhibitory and the minimum bactericidal concentration were 93.4 μg/mL and 373.6 μg/mL, respectively, for the two strains. The growth kinetics under different concentrations of CAR, as well as the bactericidal power were determined. The subinhibitory concentrations delayed and decreased bacterial growth. Its efficacy on mature biofilms was also tested. Finally, the possible hemolytic effect of CAR, not observable at the bactericidal concentrations under study, was evaluated. Findings obtained point to CAR as an excellent alternative agent to safely prevent periodontal diseases. In addition, it is important to highlight the use of an experimental methodology that includes dual-species biofilm and subinhibitory concentration models to determine optimal CAR treatment concentrations. Thus, CAR could be used preventively in mouthwashes or biomaterials, or in treatments to avoid existing antibiotic resistance

    Anti-Biofilm Perspectives of Propolis against <i>Staphylococcus epidermidis</i> Infections

    No full text
    Staphylococcus epidermis has emerged as the main causative agent of medical device-related infections. Their major pathogenicity factor lies in its ability to adhere to surfaces and proliferate into biofilms, which increase their resistance to antibiotics. The main objective of this study was to evaluate the use and the mechanism of action of an ethanolic extract of Spanish propolis (EESP) as a potential alternative for preventing biofilm-related infections caused by S. epidermidis. The chemical composition of propolis is reported and its antibacterial activity against several strains of S. epidermidis with different biofilm-forming capacities evaluated. The influence of sub-inhibitory concentrations (sub-MICs) of EESP on their growth, physicochemical surface properties, adherence, and biofilm formation were studied. EESP interferes with planktonic cells, homogenizing their physicochemical surface properties and introducing a significant delay in their growth. The adherence and biofilms at the EESP concentrations investigated were decreased up to 90.5% among the strains. Microscopic analysis indicated that the planktonic cells that survived the treatment were the ones that adhere and proliferate on the surfaces. The results obtained suggest that the EESP has a high potential to be used as an inhibitor of both the adhesion and biofilm formation of S. epidermidis.</i

    Dynamic Adhesive Behavior and Biofilm Formation of <i>Staphylococcus aureus</i> on Polylactic Acid Surfaces in Diabetic Environments

    No full text
    Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of S. aureus to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA

    Modification of physico-chemical surface properties and growth of Staphylococcus aureus under hyperglycemia and ketoacidosis conditions

    No full text
    Diabetes is a widely spread disease affecting the quality of life of millions of people around the world and is associated to a higher risk of developing infections in different parts of the body. The reasons why diabetes enhances infection episodes are not entirely clear; in this study our aim was to explore the changes that one of the most frequently pathogenic bacteria undergoes when exposed to hyperglycemia and ketoacidosis conditions. Physical surface properties such as hydrophobicity and surface electrical charge are related to bacterial growth behavior and the ability of Staphylococcus aureus to form biofilms. The addition of glucose made bacteria more negatively charged and with moderate-intermediate hydrophobicity. Ketone bodies increased hydrophobicity to approximately 75% and pathological concentrations hindered some of the bacterial surface charge by decreasing the negative zeta potential of cells. When both components were present, the bacterial physical surface changes were more similar to those observed in ketone bodies, suggesting a preferential adsorption of ketone bodies over glucose because of the more favorable solubility of glucose in water. Glucose diabetic concentrations gave the highest number of bacteria in the stationary phase of growth and provoked an increase in the biofilm slime index of around 400% in relation to the control state. Also, this situation is related with an increase of bacterial coverage. The combination of a high concentration of glucose and ketone bodies, which corresponds to a poorly controlled diabetic situation, appears associated with an early infection phase; increased hydrophobic attractive force and reduced electrostatic repulsion between cells results in better packing of cells within the biofilm and more efficient retention to the host surface. Knowledge of bacterial response in high amount of glucose and ketoacidosis environments can serve as a basis for designing strategies to prevent bacterial adhesion, biofilm formation and, consequently, the development of infections.Authors are grateful to Junta de Extremadura and FEDER (grant numbers GR18153, GR18096 and IB20092), project RTI2018-096862- B-I00, supported by FEDER (European Regional Development Fund " Una Manera de hacer Europa”), Ministry of Science and Innovation of the Government of Spain, Spanish Research Agency, respectively. Also, MFG, would like to thank the Junta de Extremadura and the European Social Fund for its grant PD16055.peerReviewe

    Synergistic Activity of Ingulados Bacteria with Antibiotics against Multidrug-Resistant Pathogens

    No full text
    Antimicrobial resistance is a critical challenge due to the overuse of conventional antimicrobials, and alternative solutions are urgently needed. This study investigates the efficacy of compounds derived from lactic acid bacteria (LAB) fermentation combined with antibiotics against multidrug-resistant pathogens isolated from clinical cases in a hospital setting. Strains of Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecium and faecalis were isolated and selected from blood, respiratory, and urine samples. They were tested against the fermentation products from the Ingulados LAB collection (BAL5, BAL6, BAL8, BAL13, and BAL16), recognized for their antimicrobial efficacy against veterinary pathogens. The activity against multidrug-resistant (MDR) pathogens was evaluated initially, followed by synergy tests using checkerboard assays and subsequent analysis. Bioinformatic assessments and supernatant treatments were performed to characterize the nature of the compounds responsible for the antimicrobial activity. Notably, BAL16 exhibited significant growth inhibition against multidrug-resistant E. faecium. Synergy tests highlighted its combined activity with tetracycline through FICI and surface analysis and bioinformatic analysis unveiled the protein fraction containing bacteriocins as the underlying mechanism. This study highlights BAL16 fermentation products potential as valuable antimicrobial agents against MDR E. faecium infections, attributed to bacteriocins. Further in-depth studies are necessary for complete bacteriocin characterization

    Cobalt(II) complexes derived from a 2-aminobenzimidazole-thiazoline ligand: Synthesis, characterization, crystal structures and antimicrobial activity studies

    No full text
    As part of our ongoing studies related with the coordination chemistry of 2-thiazoline derivatives with transition ions, we report the synthesis of a new class of structurally novel complexes containing in their structures a 2-aminobenzimidazole ring. The resulting compound, 2-(2-aminobenzimidazole-1-yl)-2-thiazoline (BzTn), and two cobalt(II) complexes have been structurally characterized by means of physical measurements. The crystal structures of BzTn, [CoCl2(BzTn)2] (1) and [CoBr2(BzTn)2] (2) have been determined by single crystal X-ray diffraction. In both Co(II) complexes, BzTn acts as a monodentate ligand through nitrogen atom of benzimidazole ring. The distorted tetrahedral environmental around the Co(II) ions is completed with two halide ions. Besides that, the newly synthesized compounds were screened for their antimicrobial activity against 6 strains of bacteria: S. aureus, E. coli, S. epidermidis. B. subtilis, E. faecalis y P. aeruginosa.This work was supported by Junta de Extremadura grants (GR18062 and GR18096) for financial support.peerReviewe

    Relevance of Topographic Parameters on the Adhesion and Proliferation of Human Gingival Fibroblasts and Oral Bacterial Strains

    No full text
    Dental implantology allows replacement of failing teeth providing the patient with a general improvement of health. Unfortunately not all reconstructions succeed, as a consequence of the development of infections of bacterial origin on the implant surface. Surface topography is known to modulate a differential response to bacterial and mammalian cells but topographical measurements are often limited to vertical parameters. In this work we have extended the topographical measurements also to lateral and hybrid parameters of the five most representative implant and prosthetic component surfaces and correlated the results with bacterial and mammalian cell adhesion and proliferation outcomes. Primary human oral gingival fibroblast (gum cells) and the bacterial strains: Streptococcus mutans, Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans, implicated in infectious processes in the oral/implant environment were employed in the presence or absence of human saliva. The results confirm that even though not all the measured surface is available for bacteria to adhere, the overall race for the surface between cells and bacteria is more favourable to the smoother surfaces (nitrided, as machined or lightly acid etched) than to the rougher ones (strong acid etched or sandblasted/acid etched)
    corecore