835 research outputs found

    Negative time delay for wave reflection from a one-dimensional semi-harmonic well

    Full text link
    It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.Comment: 6 pages, 5 eps figures. Talk presented at the XXX Workshop on Geometric Methods in Physics, Bialowieza, Poland, 201

    Aging affects attunement in perceiving length by dynamic touch

    Get PDF
    Earlier studies have revealed age-dependent differences in perception by dynamic touch. In the present study, we examined whether the capacity to learn deteriorates with aging. Adopting an ecological approach to learning, the authors examined the process of attunement—that is, the changes in what informational variable is exploited. Young and elderly adults were trained to perceive the lengths of unseen, handheld rods. It was found that the capacity to attune declines with aging: Contrary to the young adults, the elderly proved unsuccessful in learning to detect the specifying informational variables. The fact that aging affects the capacity to attune sets a new line of research in the study of perception and perceptual-motor skills of elderly. The authors discuss the implications of their findings for the ongoing discussions on the ecological approach to learning

    Control of single-spin magnetic anisotropy by exchange coupling

    Get PDF
    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation1, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons2 in water molecules in a host's tissue3. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices4, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices5 in which an individual magnetic atom or molecule is coupled to conducting leads

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Updating known distribution models for forecasting climate change impact on endangered species

    Get PDF
    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli’s Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species’ distribution, instead of building new models that are based on climate change variables only.Ministerio de Ciencia e Innovación and FEDER (project CGL2009-11316/BOS

    Atomic spin chain realization of a model for quantum criticality

    Get PDF
    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration. Step-by-step assembly promises an interesting handle on the emergence of quantum collective behavior as one goes from one, to few, to many constituents. To achieve this, one must however maintain the ability to tune and measure local properties as the system size increases. Here, we use low-temperature scanning tunneling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, indicating the onset of critical behavior. Our results present opportunities for further studies on quantum behavior of many-body systems, as a function of their size and structural complexity.Comment: published online on 18 Apr 2016 in Nature Physic

    Simplifying the detection of MUTYH mutations by high resolution melting analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MUTYH</it>-associated polyposis (MAP) is a disorder caused by bi-allelic germline <it>MUTYH </it>mutation, characterized by multiple colorectal adenomas. In order to identify mutations in <it>MUTYH </it>gene we applied High Resolution Melting (HRM) genotyping. HRM analysis is extensively employed as a scanning method for the detection of heterozygous mutations. Therefore, we applied HRM to show effectiveness in detecting homozygous mutations for these clinically important and frequent patients.</p> <p>Methods</p> <p>In this study, we analyzed phenotype and genotype data from 82 patients, with multiple (>= 10) synchronous (19/82) or metachronous (63/82) adenomas and negative <it>APC </it>study (except one case). Analysis was performed by HRM-PCR and direct sequencing, in order to identify mutations in <it>MUTYH </it>exons 7, 12 and 13, where the most prevalent mutations are located. In monoallelic mutation carriers, we evaluated entire <it>MUTYH </it>gene in search of another possible alteration. HRM-PCR was performed with strict conditions in several rounds: the first one to discriminate the heteroduplex patterns and homoduplex patterns and the next ones, in order to refine and confirm parameters. The genotypes obtained were correlated to phenotypic features (number of adenomas (synchronous or metachronous), colorectal cancer (CRC) and family history).</p> <p>Results</p> <p><it>MUTYH </it>germline mutations were found in 15.8% (13/82) of patients. The hot spots, Y179C (exon 7) and G396D (exon 13), were readily identified and other mutations were also detected. Each mutation had a reproducible melting profile by HRM, both heterozygous mutations and homozygous mutations. In our study of 82 patients, biallelic mutation is associated with being a carrier of ≥10 synchronous polyps (p = 0.05) and there is no association between biallelic mutation and CRC (p = 0.39) nor family history (p = 0.63). G338H non-pathogenic polymorphism (exon 12) was found in 23.1% (19/82) of patients. In all cases there was concordance between HRM (first and subsequent rounds) and sequencing data.</p> <p>Conclusions</p> <p>Here, we describe a screening method, HRM, for the detection of both heterozygous and homozygous mutations in the gene encoding <it>MUTYH </it>in selected samples of patients with phenotype of MAP. We refine the capabilities of HRM-PCR and apply it to a gene not yet analyzed by this tool. As clinical decisions will increasingly rely on molecular medicine, the power of identifying germline mutations must be continuously evaluated and improved.</p

    Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Get PDF
    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time
    corecore