194 research outputs found

    Evaluation of thermally stable phosphor screens for application in laser diode excited high brightness white light modules

    Get PDF
    A study on the preparation of thermally stable phosphor targets based on yttrium aluminum garnet doped with cerium (YAG:Ce) when excited by a high power laser diode is described. The luminous flux, chromaticity and radial spectral flux of the targets along with their thermal stability have been determined when exposed to laser powers of up to 5000 mW. This report presents successful high brightness light sources with adjustable emission properties achieved by utilizing thermally stable phosphor targets excited by high power laser diodes.Brunel University London, No. EP/K504208/

    Materials Suitable for preparing Inorganic nanocasts of butterflies and other insects

    Get PDF
    Replication of 3D-structures, in particular those that have a periodic modulation of a dielectric material at optical wavelengths and below have proven very difficult to fabricate. The majority of such replication techniques are complex or use moisture sensitive precursors requiring the use of for example a glove box. Here we demonstrate how an air stable supersaturated europium-doped yttrium nitrate phosphor precursor solution has the ability to easily impregnate a structure or produce a cast yielding faithful replicas composed of Y2O:Eu3+ after a final short annealing step. New replicas of Lepidoptera (moth) wing scales using field emissionscanning electron microscopy, structures down to 10 nm have been imaged. Moreover as these replicas are made of phosphors, their luminescence in some cases may be modulated by the internal periodic modulation built into their structures. In this work we will discuss more recent results on the use of the phosphors for making nanocasts of moth wing scales and show a range of beautiful pictures to show what the method can achieve

    Photovoltaic cells energy performance enhancement with down-converting photoluminescence phosphors

    Get PDF
    Phosphors, synthesized by the urea homo-precipitation method, were examined as ultraviolet-spectral down conversion materials for improving the light absorption and electrical characteristics of commercial single-junction silicon solar cells. The photovoltaic (PV) cells were coated with erbium and terbium doped gadolinium oxysulfide phosphors encapsulated in ethyl vinyl-acetate binder using blade screen printing technique, and the optimum concentration of phosphor in the composite resulted in the largest light conversion, and superior electrical output and energy transfer efficiency. Moreover, the results demonstrated that the composition of dispersed phosphors has a strong influence on the amount of ultraviolet-light converted and electron transition capacity of PV cells. The experimental results showed in an optimized PV cell, an enhancement of 0.54% (from 12.11% to 12.65%) in the energy conversion of a Si-based PV cell was achieved.Mr. Ben Parker of LOT-QuantumDesig

    Investigating the emission characteristics of single crystal YAG when activated by high power laser beams

    Get PDF
    © The Author(s) 2016. Limitations associated with light emitting diodes (LEDs) operating under high current densities due to the efficiency droop has created a need to look for alternative light sources; here we report investigations on the potential of laser diodes (LDs) for high brightness lighting solutions. High power laser diodes require phosphor targets with certain performance criteria such as high thermal conductivity, efficiency and structural geometry. Here we examine the possibility of using single crystal YAG:Ce phosphor materials as potential targets for generation of light via laser diodes. We report on the emission properties of the crystals with different sizes and examine the effect of laser beam incident angle incident on crystal target emission

    Development of high temperature, radiation hard detectors based on diamond

    Get PDF
    © 2016 Single crystal CVD diamond has many desirable properties compared to current, well developed, detector materials; exceptional radiation, chemical and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry), wide bandgap and an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. However effective exploitation of these properties requires development of a suitable metallisation scheme to give stable contacts for high temperature applications. To best utilise available processing techniques to optimise sensor response through geometry and conversion media configurations, a reliable model is required. This must assess the performance in terms of spectral response and overall efficiency as a function of detector and converter geometry. The same is also required for proper interpretation of experimental data. Sensors have been fabricated with varying metallisation schemes indented to permit high temperature operation; Present test results indicate that viable fabrication schemes for high temperature contacts have been developed and present modelling results, supported by preliminary data from partners indicate simulations provide a useful representation of response
    • …
    corecore