3 research outputs found

    A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms

    Full text link
    Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories

    Extraction of Scores and Average From Algerian High-School Degree Transcripts

    Get PDF
    A system for extracting scores and average from Algerian High School Degree Transcripts is proposed. The system extracts the scores and the average based on the localization of the tables gathering this information and it consists of several stages. After preprocessing, the system locates the tables using ruling-lines information as well as other text information. Therefore, the adopted localization approach can work even in the absence of certain ruling-lines or the erasure and discontinuity of lines. After that, the localized tables are segmented into columns and the columns into information cells. Finally, cells labeling is done based on the prior knowledge of the tables structure allowing to identify the scores and the average. Experiments have been conducted on a local dataset in order to evaluate the performances of our system and compare it with three public systems at three levels, and the obtained results show the effectiveness of our system

    Mammographic mass classification according to Bi‐RADS lexicon

    No full text
    The goal of this study is to propose a computer‐aided diagnosis system to differentiate between four breast imaging reporting and data system (Bi‐RADS) classes in digitised mammograms. This system is inspired by the approach of the doctor during the radiologic examination as it was agreed in BI‐RADS, where masses are described by their form, their boundary and their density. The segmentation of masses in the authors’ approach is manual because it is supposed that the detection is already made. When the segmented region is available, the features extraction process can be carried out. 22 visual characteristics are automatically computed from shape, edge and textural properties; only one human feature is used in this study, which is the patient's age. Classification is finally done using a multi‐layer perceptron according to two separate schemes; the first one consists of classify masses to distinguish between the four BI‐RADS classes (2, 3, 4 and 5). In the second one the authors classify abnormalities on two classes (benign and malign). The proposed approach has been evaluated on 480 mammographic masses extracted from the digital database for screening mammography, and the obtained results are encouraging
    corecore