17 research outputs found

    Mesoscale Structure-Function Relationships in Mitochondrial Transcriptional Condensates

    Get PDF
    In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates

    Mechanics of Cell Growth

    No full text
    Organisms vary in size by orders of magnitude spanning 1 μm to hundreds of meters, yet their cells remain on the micron length scale. The physical mechanisms that control the size of cells remain unclear. Here, I study the extraordinarily large oocytes (immature eggs) from the frog Xenopus laevis to understand how cell organization and mechanics change as these cells grow to reach sizes of 1 mm. I discover that these oocytes have evolved to contain a unique nuclear actin meshwork that supports the liquid-like nuclear bodies from gravitational sedimentation and mass fusion events. I find that gravitational forces on organelles dominate random thermal forces for cell sizes greater than ~100 μm, suggesting that large cells require novel mechanisms to maintain proper spatial organization. Directly probing the material properties with active microrheology, I find that nuclear actin forms a soft viscoelastic network that is capable of undergoing gravitational creep on the time scale of growth. This suggests that the material properties of nuclear actin are matched to its mechanical role in kinetically stabilizing an emulsion of nuclear bodies during growth. For forces higher than 1 g and for longer times, these nuclear bodies will undergo significant displacements in the nucleus due to gravitational creep, thereby disrupting proper cellular organization. Although these nuclear bodies are known to behave as liquids, it still remains unknown how they maintain three distinct compartments. Visualizing nuclear actin shows protrusion of filaments inside these nuclear bodies in between different compartments, and by disrupting nuclear actin, I find that these compartments are able to rearrange and undergo homotypic fusion events. In combination with in vitro approaches, I determine that each nucleolar compartment represents a distinct liquid-like phase, and these nuclear bodies are thus behaving as multiphase droplets. Principles from liquid-liquid phase transitions provide a physical framework for organization even within organelles. Overall, X. laevis oocytes are an example of how cells can evolve to reach large sizes. Simple biophysical mechanisms can allow cells to maintain structural organization, even on length scales ~1,000 times their typical size

    Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule

    No full text
    Recent advances in mass spectrometry (MS) have provided means for large-scale phosphoproteomic profiling of specific tissues. Here, we report results from large-scale tandem MS [liquid chromatography (LC)-MS/MS]-based phosphoproteomic profiling of biochemically isolated membranes from the renal cortex, with focus on transporters and regulatory proteins. Data sets were filtered (by target-decoy analysis) to limit false-positive identifications to <2%. A total of 7,125 unique nonphosphorylated and 743 unique phosphorylated peptides were identified. Among the phosphopeptides identified were sites on transporter proteins, i.e., solute carrier (Slc, n = 63), ATP-binding cassette (Abc, n = 4), and aquaporin (Aqp, n = 3) family proteins. Database searches reveal that a majority of the phosphorylation sites identified in transporter proteins were previously unreported. Most of the Slc family proteins are apical or basolateral transporters expressed in proximal tubule cells, including proteins known to mediate transport of glucose, amino acids, organic ions, and inorganic ions. In addition, we identified potentially important phosphorylation sites for transport proteins from distal nephron segments, including the bumetanide-sensitive Na-K-2Cl cotransporter (Slc12a1 or NKCC2) at Ser87, Thr101, and Ser126 and the thiazide-sensitive Na-Cl cotransporter (Slc12a3 or NCC) at Ser71 and Ser124. A subset of phosphorylation sites in regulatory proteins coincided with known functional motifs, suggesting specific regulatory roles. An online database from this study (http://dir.nhlbi.nih.gov/papers/lkem/rcmpd/) provides a resource for future studies of transporter regulation
    corecore