771 research outputs found

    A New Timescale for Period Change in the Pulsating DA White Dwarf WD 0111+0018

    Get PDF
    We report the most rapid rate of period change measured to date for a pulsating DA (hydrogen atmosphere) white dwarf (WD), observed in the 292.9 s mode of WD 0111+0018. The observed period change, faster than 10^{-12} s/s, exceeds by more than two orders of magnitude the expected rate from cooling alone for this class of slow and simply evolving pulsating WDs. This result indicates the presence of an additional timescale for period evolution in these pulsating objects. We also measure the rates of period change of nonlinear combination frequencies and show that they share the evolutionary characteristics of their parent modes, confirming that these combination frequencies are not independent modes but rather artifacts of some nonlinear distortion in the outer layers of the star.Comment: 10 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Morton-Ordered GPU Lattice Boltzmann CFD Simulations with Application to Blood Flow

    Get PDF
    Computational fluid dynamics (CFD) is routinely used for numerically predicting cardiovascular-system medical device fluid flows. Most CFD simulations ignore the suspended cellular phases of blood due to computational constraints, which negatively affects simulation accuracy. A graphics processing unit (GPU) lattice Boltzmann-immersed boundary (LB-IB) CFD software package capable of accurately modelling blood flow is in development by the authors, focusing on the behaviour of plasma and stomatocyte, discocyte and echinocyte red blood cells during flow. Optimised memory ordering and layout schemes yield significant efficiency improvements for LB GPU simulations. In this work, comparisons of row-major-ordered Structure of Arrays (SoA) and Collected Structure of Arrays (CSoA) memory layouts with a Morton-ordered SoA memory layout for the LB plasma solver are presented, with speedups of up to 20% achieved against the base row-major-ordered SoA model. Further investigation is recommended on whether these efficiency increases remain for larger mesh densities in comparison to CSoA layouts, and hybrid Morton ordering schemes could alleviate any limitations with dimension sizing. The current optimisations are deemed useful for future blood simulation validation work involving cubic LB domains, such as optical tweezers tests and in-plane and out-of-plane shear flow

    Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review.

    Get PDF
    Bone tissue engineering aims to generate clinically applicable bone graft substitutes in an effort to ease the demands and reduce the potential risks associated with traditional autograft and allograft bone replacement procedures. Biomechanical stimuli play an important role under physiologically relevant conditions in the normal formation, development, and homeostasis of bone tissue--predominantly, strain (predicted levels in vivo for humans \u3c2000\u3eμε) caused by physical deformation, and fluid shear stress (0.8-3 Pa), generated by interstitial fluid movement through lacunae caused by compression and tension under loading. Therefore, in vitro bone tissue cultivation strategies seek to incorporate biochemical stimuli in an effort to create more physiologically relevant constructs for grafting. This review is focused on collating information pertaining to the relationship between fluid shear stress, cellular deformation, and osteogenic differentiation, providing further insight into the optimal culture conditions for the creation of bone tissue substitutes

    IV.3. Bioreactors in tissue engineering.

    Get PDF
    IV.3. Bioreactors in tissue engineering

    The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering.

    Get PDF
    In this study, we examined the effects of varying collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Three different collagen contents (0.25%, 0.5% and 1% collagen) and two different dehydrothermal (DHT) crosslinking processes [1] 105 degrees C for 24 h and [2] 150 degrees C for 48 h were investigated. These scaffolds were assessed for (1) pore size, (2) permeability (3) compressive strength and (4) cell viability. The largest pore size, permeability rate, compressive modulus, cell number and cell metabolic activity was all found to occur on the 1% collagen scaffold due to its increased collagen composition and the DHT treatment at 150 degrees C was found to significantly improve the mechanical properties and not to affect cellular number or metabolic activity. These results indicate that doubling the collagen content to 1% and dehydrothermally crosslinking the scaffold at 150 degrees C for 48 h has enhanced mechanical and biological properties of the scaffold making it highly attractive for use in bone tissue engineering

    Composite Scaffolds for Orthopaedic Regenerative Medicine

    Get PDF

    Influence of a novel calcium-phosphate coating on the mechanical properties of highly porous collagen scaffolds for bone repair.

    Get PDF
    Lyophilised collagen scaffolds have shown enormous potential in tissue engineering in a number of areas due to their excellent biological performance. However, they are limited for use in bone tissue engineering due to poor mechanical properties. This paper discusses the development of a calcium-phosphate coating for collagen scaffolds in order to improve their mechanical properties for bone tissue engineering. Pure collagen scaffolds produced in a lyophilization process were coated by immersing them in sodium ammonium hydrogen phosphate (NaNH(4)HPO(4)) followed by calcium chloride (CaCl(2)). The optimal immersing sequence, duration, as well as the optimal solution concentration which facilitated improved mechanical properties of the scaffolds was investigated. The influence of the coating on composition, structural and material properties was analysed. This investigation successfully developed a novel collagen/calcium-phosphate composite scaffold. An increase in the mechanical properties of the scaffolds from 0.3 kPa to up to 90 kPa was found relative to a pure collagen scaffold, while the porosity was maintained as high as 92%, indicating the potential of the scaffold for bone tissue engineering or as a bone graft substitute

    Seeding for pervasively overlapping communities

    Full text link
    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms that are designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes increasingly important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.Comment: 8 Page
    corecore