3,196 research outputs found

    Explaining Recurring Maser Flares in the ISM Through Large-scale Entangled Quantum Mechanical States

    Get PDF
    We apply Dicke's theory of superradiance introduced in 1954 to the methanol 6.7 GHz and water 22 GHz spectral lines, often detected in molecular clouds as signposts for the early stages of the star formation process. We suggest that superradiance, characterized by burst-like features taking place over a wide range of time-scales, may provide a natural explanation for the recent observations of periodic and seemingly alternating methanol and water maser flares in G107.298+5.639. Although these observations would be very difficult to explain within the context of maser theory, we show that these flares may result from simultaneously initiated 6.7-GHz methanol and 22-GHz water superradiant bursts operating on different time-scales, thus providing a natural mechanism for their observed durations and time ordering. The evidence of superradiance in this source further suggests the existence of entangled quantum mechanical states, involving a very large number of molecules, over distances up to a few kilometres in the interstellar medium.Comment: 14 pages, 3 figure

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges
    • …
    corecore