2 research outputs found
A Supervised STDP-based Training Algorithm for Living Neural Networks
Neural networks have shown great potential in many applications like speech
recognition, drug discovery, image classification, and object detection. Neural
network models are inspired by biological neural networks, but they are
optimized to perform machine learning tasks on digital computers. The proposed
work explores the possibilities of using living neural networks in vitro as
basic computational elements for machine learning applications. A new
supervised STDP-based learning algorithm is proposed in this work, which
considers neuron engineering constrains. A 74.7% accuracy is achieved on the
MNIST benchmark for handwritten digit recognition.Comment: 5 pages, 3 figures, Accepted by ICASSP 201