286 research outputs found

    Critical Field of MGB2 : Crossover from Clean to Dirty Regimes

    Full text link
    We have studied the upper critical field, Bc2, in poly-crystalline MgB2 samples in which disorder was varied in a controlled way to carry selectively p and s bands from clean to dirty limit. We have found that the clean regime survives when p bands are dirty and s bands are midway between clean and dirty. In this framework we can explain the anomalous behaviour of Al doped samples, in which Bc2 decreases as doping increases.Comment: 11 pages, 2 figure

    The Crossover beteween Aslamazov-Larkin and Short Wavelength Fluctuations Regimes in HTS Conductivity Experiments

    Full text link
    We present paraconductivity (AL) measurements in three different high temperature superconductors: a melt textured YBa2Cu3O7YBa_2Cu_3O_7 sample, a Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 epitaxial thin film and a highly textured Bi2Sr2Ca2Cu3O10Bi_2Sr_2Ca_2Cu_3O_{10} tape. The crossovers between different temperature regimes in excess conductivity have been analysed. The Lawrence-Doniach (LD) crossover, which separates the 2D and 3D regimes, shifts from lower to higher temperatures as the compound anisotropy decreases. Once the LD crossover is overcome, the fluctuation conductivity of the three compounds shows the same universal behaviour: for ϵ=lnT/Tc>0.23\epsilon =\ln T/T_c > 0.23 all the curves bend down according to the 1/ϵ31/\epsilon^3 law. This asymptotic behaviour was theoretically predicted previously for the high temperature region where the short wavelength fluctuations (SWF) become important.Comment: 4 pages, Revtex, 1 PostScript figure available upon request ([email protected]); submitted to Physical Review B rapid communication

    Neutron Irradiation of Mg11B2 : From the Enhancement to the Suppression of Superconducting Properties

    Full text link
    In this letter we present the effect of neutron irradiation up to fluences of 3.9 1019 n/cm2 on the superconducting properties of MgB2. In order to obtain a disorder structure homogeneously distributed, the experiment was carried out on bulk samples prepared with the 11B isotope. Up to fluences of 1018 n/cm2 the critical temperature is slightly diminished (36 K) and the superconducting properties are significantly improved; the upper critical field is increased from 13.5 T to 20.3 T at 12 K and the irreversibility field is doubled at 5 K. For larger neutron fluences the critical temperature is suppressed down to 12 K and the superconducting properties come out strongly degraded.Comment: 13 pages, 4 figures. Submitted to Appl.Phys.Let

    Effect of two bands on critical fields in MgB2 thin films with various resistivity values

    Full text link
    Upper critical fields of four MgB2 thin films were measured up to 28 Tesla at Grenoble High Magnetic Field Laboratory. The films were grown by Pulsed Laser Deposition and showed critical temperatures ranging between 29.5 and 38.8 K and resistivities at 40 K varying from 5 to 50 mWcm. The critical fields in the perpendicular direction turned out to be in the 13-24 T range while they were estimated to be in 42-57 T the range in ab-planes. In contrast to the prediction of the BCS theory, we did not observe any saturation at low temperatures: a linear temperature dependence is exhibited even at lowest temperatures at which we made the measurements. Moreover, the critical field values seemed not to depend on the normal state resistivity value. In this paper, we analyze these data considering the multiband nature of superconductivity in MgB2 We will show how the scattering mechanisms that determine critical fields and resistivity can be different.Comment: 17 pages, 3 figure

    Enhanced flux pinning in neutron irradiated MgB2

    Full text link
    We study the effect of neutron irradiation on the critical current density Jc of isotopically pure polycrystalline Mg11B2 samples. For fluences in the range 1017-1018 cm-2, Jc is enhanced and its dependence on magnetic field is significantly improved: we demonstrate that, in this regime, point-like pinning centers are effectively introduced in the system proportionally to the neutron fluence. Instead, for larger fluences, a strong suppression of the critical temperature accompanied by a decrease of both the upper critical field Bc2 and Jc is found.Comment: 13 pages, 3 igure

    Anisotropy in c-oriented MgB2 thin films grown by Pulsed Laser Deposition

    Full text link
    The electronic anisotropy in MgB2, is still a not completely clear topic; high quality c-oriented films are suitable systems to investigate this property. In this work we present our results on MgB2 superconducting thin films grown on MgO and sapphire substrates. The films are deposited in high vacuum, at room temperature, by Laser Ablation, starting from two different targets: pure Boron and stoichiometric MgB2. In both cases, to obtain and crystallize the superconducting phase, an ex-situ annealing in magnesium vapor is needed. The films were characterized by Synchrotron radiation diffraction measurements; the films turned out to be strongly c-oriented, with the c-axis perpendicular to the film surface and an influence of the substrate on crystallographic parameters is observed. Resisivity measurements with the magnetic field perpendicular and parallel directions to the film surface evidenced an anisotropic upper critical field behavior. The Hc2 ratios (h) resulted in the range 1.2-1.8; this difference will be discussed also in comparison with the literature data.Comment: presented at ISS 2001,Kobe,Japan. submitted to Physica

    Chiral biobased ionic liquids with cations or anions including bile acid building blocks as chiral selectors in voltammetry

    Get PDF
    Chiral ionic liquids (CILs), or ionic liquids (ILs) with chiral additives, are very attractive chiral media for enantioselective electroanalysis, on account of their high chiral structural order at the electrochemical interphase. A family of molecular salts with CIL properties is now introduced, based on the chiral steroid building block of deoxycholic acid implemented either in the anion or cation. Testing them as chiral additives in a commercial achiral IL, they enable voltammetric discrimination of the enantiomers of a model chiral probe on disposable screen-printed electrodes in terms of peak potential differences, which is the most desirable transduction mode of the enantiorecognition event. The probe enantiomer sequence is the same for all selectors, consistent with their sharing the same chiral building block configuration. This proof-of-concept widens the application fields of bile acid derivatives as chiral selectors, while also enriching the still very few CIL families so far explored for applications in chiral electroanalysis
    corecore