367 research outputs found

    Some remarks on Bell's Inequality tests

    Get PDF
    We emphasize the difficulties of an experiment that can definitely discriminate between local realistic hidden variables theories and quantum mechanics using the Bell CHSH inequalities and a real measurement apparatus. In particular we analyze some examples in which the noise in real instruments can alter the experimental results, and the nontrivial problem to find a real "fair sample" of particles to test the inequalities.Comment: 12 pages, Latex, 2 figures, to be published in Europhysics Letter

    A dynamical symmetry breaking model in Weyl space

    Get PDF
    The dynamical process following the breaking of Weyl geometry to Riemannian geometry is considered by studying the motion of de Sitter bubbles in a Weyl vacuum. The bubbles are given in terms of an exact, spherically symmetric thin shell solution to the Einstein equations in a Weyl-Dirac theory with a time-dependent scalar field of the form beta = f(t)/r. The dynamical solutions obtained lead to a number of possible applications. An important feature of the thin shell model is the manner in which beta provides a connection between the interior and exterior geometries since information about the exterior geometry is contained in the boundary conditions for beta.Comment: 18 pages, RevTex, to be published in J. Math. Phy

    Cosmological constraints from supernova data set with corrected redshift

    Full text link
    Observations of distant type Ia supernovae (SNe Ia), used as standard candles, support the notion that the Cosmos is filled with a mysterious form of energy, the dark energy. The constraints on cosmological parameters derived from data of SNe Ia and the measurements of the cosmic microwave background anisotropies indicate that the dark energy amounts to roughly 70% of all the energy contained in the Universe. In the hypothesis of a flat Universe, we investigate if the dark energy is really required in order to explain the SNe Ia experimental data, and, in this case, how much of such unknown energy is actually deduced from the analysis of these data and must be introduced in the LambdaCDM model of cosmology. In particular we are interested in verifying if the Einstein-de Sitter model of the expanding Universe is really to be ruled out. By using a fitting procedure based on the Newton method search for a minimum, we reanalyzed the "Union compilation" reported by Kowalski et al. (2008) formed by 307 SNe, obtaining a very different estimate of the dark energy, that is roughly 60%. Furthermore, in order to balance the correction of the apparent magnitude of SNe Ia, due to the dilation or stretching of the corresponding light curve width, we introduce a suitable modified redsfhit. Taking into account this correction, we refitted the Union compilation dataset after a selection cut. The main result that emerges from our analysis is that the values of Omega_m and Omega_Lambda strongly depend on the fitting procedure and the selected sample. In particular, the constraint we obtain on the mass density, normalized by the critical mass density, is Omega_m = 0.7 for a sample of 252, and Omega_m = 1 for a sample of 242 SNe Ia respectively. The latter case does not imply the existence of any additional form of dark energy.Comment: 10 pages, 2 figure

    Dynamics of relativistic particle with Lagrangian dependent on acceleration

    Get PDF
    Models of relativistic particle with Lagrangian L(k1){\cal L}(k_1), depending on the curvature of the worldline k1k_1, are considered. By making use of the Frenet basis, the equations of motion are reformulated in terms of the principal curvatures of the worldline. It is shown that for arbitrary Lagrangian function L(k1){\cal L}(k_1) these equations are completely integrable, i.e., the principal curvatures are defined by integrals. The constants of integration are the particle mass and its spin. The developed method is applied to the study of a model of relativistic particle with maximal proper acceleration, whose Lagrangian is uniquely determined by a modified form of the invariant relativistic interval. This model gives us an example of a consistent relativistic dynamics obeying the principle of a superiorly limited value of the acceleration, advanced recently.Comment: 15 pages, LATEX, Preprint Salerno University DFT-US-3/9

    Oscillating universes as eigensolutions of cosmological Schrödinger equation

    Get PDF
    We propose a cosmological model which could explain, in a very natural way, the apparently periodic structures of the universe, as revealed in a series of recent observations. Our point of view is to reduce the cosmological Friedman--Einstein dynamical system to a sort of Schrödinger equation whose bound eigensolutions are oscillating functions. Taking into account the cosmological expansion, the large scale periodic structure could be easily recovered considering the amplitudes and the correlation lengths of the galaxy clusters

    Maximal acceleration or maximal accelerations?

    Get PDF
    We review the arguments supporting the existence of a maximal acceleration for a massive particle and show that different values of this upper limit can be predicted in different physical situations.Comment: 13 pages, Latex, to be published in Int. J. Mod. Phys.
    corecore