2,871 research outputs found

    Surface and Groundwater Interactions: Location of a sub-surface remediation trench

    Get PDF
    End of project reportThe Water Framework Directive aims to achieve at least “good status” of all surface and groundwater bodies by 2015. In 2009 programmes of measures to achieve this status must be implemented. In 2012 water quality response to these measures will be examined at river basin catchment level. The adoption of the Water Framework Directive from the 1st January 2007 restricts the amount of nutrients which can be applied to agricultural land. A nutrient discharge to a waterbody has a negative impact on the environment and may lead to eutrophication. A broad strategy exists at European level to minimise nutrient loss to a waterbody. This strategy examines the source/pressure, pathway and receptor approach for nutrient transport. Such nutrient management strategies try to minimise nutrient loss while maintaining productivity. Nitrogen usage is now associated with environmental degradation even at lower levels than the maximum allowable concentration (11.3 mg NO3-N L-1). A further strategy proposes that nutrient management and increased utilisation of nutrients alone will fail to recognise nutrient loss even at high levels of efficiency. This strategy attempts to use remediation (Nitrate) and control technologies (Phosphorous) to intercept nutrients before discharge. Another function would be to further reduce concentrations presently at allowable levels. This introduces an interceptor phase into the nutrient transfer model

    Ireland’s Rural Environment: Research Highlights from Johnstown Castle

    Get PDF
    ReportThis booklet gives a flavour of the current research in Teagasc Johnstown Castle Research Centre and introduces you to the staff involved. It covers the areas of Nutrient Efficiency, Gaseous emissions, Agricultural Ecology, Soils and Water quality

    The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    Get PDF
    peer-reviewedLand application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.This research was funded by the Teagasc Walsh Fellowship Scheme and the AnimalChange Framework 7 Project (FP7-KBBE-2010-4)

    Impact of pig slurry amendments on phosphorus, suspended sediment and metal losses in laboratory runoff boxes under simulated rainfall

    Get PDF
    peer-reviewedLosses of phosphorus (P) when pig slurry applications to land are followed by a rainfall event or losses from soils with high P contents can contribute to eutrophication of receiving waters. The addition of amendments to pig slurry spread on high P Index soils may reduce P and suspended sediment (SS) losses. This hypothesis was tested at laboratory-scale using runoff boxes under simulated rainfall conditions. Intact grassed soil samples, 100 cm-long, 22.5 cm-wide and 5 cm-deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:total phosphorus (TP)] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. The grassed soil was then subjected to three rainfall events (10.3 ± 0.15 mm h−1) at time intervals of 48, 72, and 96 h following slurry application. Each sod received rainfall on 3 occasions. Results across three rainfall events showed that for the control treatment, the average flow weighted mean concentration (FWMC) of TP was 0.61 mg L−1, of which 31% was particulate phosphorus (PP), and the average FWMC of SS was 38.1 mg L−1. For the slurry treatment, there was an average FWMC of 2.2 mg TP L−1, 47% of which was PP, and the average FWMC of SS was 71.5 mg L−1. Ranked in order of effectiveness from best to worst, PAC reduced the average FWMC of TP to 0.64 mg L−1 (42% PP), FeCl3 reduced TP to 0.91 mg L−1 (52% PP) and alum reduced TP to 1.08 mg L−1 (56% PP). The amendments were in the same order when ranked for effectiveness at reducing SS: PAC (74%), FeCl3 (66%) and alum (39%). Total phosphorus levels in runoff plots receiving amended slurry remained above those from soil only, indicating that, although incidental losses could be mitigated by chemical amendment, chronic losses from the high P index soil in the current study could not be reduced.The first author gratefully acknowledges the award of the EMBARK scholarship from IRCSET to support this study

    Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities

    Get PDF
    Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species’ contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities

    Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland

    Get PDF
    peer-reviewedGroundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl− was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl− concentration points to denitrification, low NO3 concentration and low Cl− chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.Research Stimulus Fund, Department of Agriculture Fisheries and Food (Ireland

    The Pink Bollworm of Cotton in Texas.

    Get PDF
    39 pg

    The short-term effects of management changes on watertable position and nutrients in shallow groundwater in a harvested peatland forest

    Get PDF
    This work was funded by the Department of Agriculture, Fisheries and Food and the Environmental Protection Agency under the STRIVE program 2007 – 2013.peer-reviewedManagement changes such as drainage, fertilisation, afforestation and harvesting (clearfelling) of forested peatlands influence watertable (WT) position and groundwater concentrations of nutrients. This study investigated the impact of clearfelling of a peatland forest on WT and nutrient concentrations. Three areas were examined: (1) a regenerated riparian peatland buffer (RB) clearfelled four years prior to the present study (2) a recently clearfelled coniferous forest (CF) and (3) a standing, mature coniferous forest (SF), on which no harvesting took place. The WT remained consistently below 0.3 m during the pre-clearfelling period. Results showed there was an almost immediate rise in the WT after clearfelling and a rise to 0.15 m below ground level (bgl) within 10 months of clearfelling. Clearfelling of the forest increased dissolved reactive phosphorus concentrations (from an average of 28–230 ÎŒg L−1) in the shallow groundwater, likely caused by leaching from degrading brash mats.Environmental Protection AgencyDepartment of Agriculture, Food and the Marin

    Carbon and nitrogen dynamics: Greenhouse gases in groundwater beneath a constructed wetland treating municipal wastewater

    Get PDF
    Conference oral presentationConstructed wetlands (CW) act as nitrogen (N) sinks and reactors facilitating a number of physical, chemical and biological processes. The N removal efficiency of through-flowing water in such systems when used to treat municipal wastewater is variable. Their overall removal efficiencies do not specifically explain which N species have been removed by physical attenuation, and by biological assimilation or transformation to other forms. A wider understanding of how N removal occurs would help elucidate how losses of N and associated gases from CW impact on water and air quality. The objective of this study is to investigate the C and N cycling processes in the porewater of soils immediately adjacent, up-gradient and down- gradient to helophyte —vegetated CW cells

    A general entry to C7-borono indole derivatives

    Get PDF
    Thesis (S.M. in Organic Chemistry)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.Vita. Cataloged from PDF version of thesis.Includes bibliographical references (p. 36).The development of a methodology to access C7 pinacolatoboron substituted indole derivatives is described. It has been applied to indole, tryptophan, and tryptamine derivatives. Further functionalization to a C7 phenolic tryptamine derivative is also described.by Owen S. Fenton.S.M.in Organic Chemistr
    • 

    corecore