3 research outputs found

    Optimising CT-guided biopsies of sclerotic bone lesions in cancer patients.

    No full text
    OBJECTIVES: Investigate the laboratory, imaging and procedural factors that are associated with a tumour-positive and/or NGS-feasible CT-guided sclerotic bone lesion biopsy result in cancer patients. METHODS: In total, 113 CT-guided bone biopsies performed in cancer patients by an interventional radiologist in one institution were retrospectively reviewed. Sixty-five sclerotic bone biopsies were eventually included and routine blood parameters and tumour marker levels were recorded. Non-contrast (NC) biopsy CTs (65), contrast-enhanced CTs (24), and PET/CTs (22) performed within four weeks of biopsy were reviewed; lesion location, diameter, lesion-to-cortex distance, and NC-CT appearance (dense-sclerosis versus mild-sclerosis) were noted. Mean NC-CT, CE-CT HU, and PET SUVmax were derived from biopsy tract and lesion segmentations. Needle diameter, tract length, and number of samples were noted. Comparisons between tumour-positive/negative and next-generation sequencing (NGS)-feasible/non-feasible biopsies determined significant (p 0.298). Eighty-seven percent of mildly sclerotic bone (mean 244 HU) biopsies were positive compared with 56% in dense sclerosis (622 HU, p = 0.005) and NC-CT lesion HU was significantly lower in positive biopsies (p = 0.003). A 610 HU threshold yielded 89% PPV for tumour-positive biopsies and a 370 HU threshold 94% PPV for NGS-feasible biopsies. FDG-PET and procedural parameters were non-significant factors (each p > 0.055). CONCLUSION: In cancer patients with sclerotic bone disease, targeting areas of predominantly mild sclerosis in lower CT-attenuation lesions can improve tumour tissue yield and NGS feasibility. KEY POINTS: • Areas of predominantly mild sclerosis should be preferred to areas of predominantly dense sclerosis for CT-guided bone biopsies in cancer patients. • Among sclerotic bone lesions in prostate cancer patients, lesions with a mean HU below 370 should be preferred as biopsy targets to improve NGS feasibility. • Laboratory parameters and procedure related factors may have little implications for CT-guided sclerotic bone biopsy success

    Targeting radioresistance and replication fork stability in prostate cancer.

    No full text
    The bromodomain and extraterminal (BET) family of chromatin reader proteins bind to acetylated histones and regulate gene expression. The development of BET inhibitors (BETi) has expanded our knowledge of BET protein function beyond transcriptional regulation and has ushered several prostate cancer (PCa) clinical trials. However, BETi as a single agent is not associated with antitumor activity in patients with castration-resistant prostate cancer (CRPC). We hypothesized novel combinatorial strategies are likely to enhance the efficacy of BETi. By using PCa patient-derived explants and xenograft models, we show that BETi treatment enhanced the efficacy of radiation therapy (RT) and overcame radioresistance. Mechanistically, BETi potentiated the activity of RT by blocking DNA repair. We also report a synergistic relationship between BETi and topoisomerase I (TOP1) inhibitors (TOP1i). We show that the BETi OTX015 synergized with the new class of synthetic noncamptothecin TOP1i, LMP400 (indotecan), to block tumor growth in aggressive CRPC xenograft models. Mechanistically, BETi potentiated the antitumor activity of TOP1i by disrupting replication fork stability. Longitudinal analysis of patient tumors indicated that TOP1 transcript abundance increased as patients progressed from hormone-sensitive prostate cancer to CRPC. TOP1 was highly expressed in metastatic CRPC, and its expression correlated with the expression of BET family genes. These studies open new avenues for the rational combinatorial treatment of aggressive PCa

    Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance

    Get PDF
    Inflammation is a hallmark of cancer1. In cancer patients, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio (NLR), associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives prostate cancer progression in humans remain unclear. Herein we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of metastatic castration-resistant prostate cancer (mCRPC) patients. We show that higher blood NLR reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species including myeloid chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel androgen receptor signaling inhibitor (ARSI) resistance, and if inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with ARSI-resistant mCRPC. This combination was well tolerated without dose-limiting toxicity and decreased circulating neutrophils, reduced intratumor CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration, and imparted durable clinical benefit with biochemical and radiological responses in a subset of mCRPC patients. This study provides the first clinical evidence that senescence-associated myeloid inflammation can fuel mCRPC progression and resistance to AR blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers
    corecore