3 research outputs found

    Immune Biomarkers in Metastatic Castration-resistant Prostate Cancer.

    Get PDF
    BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE: To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS: PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS: PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY: This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies

    Characterizing CDK12-Mutated Prostate Cancers.

    No full text
    Purpose Cyclin-dependent kinase 12 (CDK12) aberrations have been reported as a biomarker of response to immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). Herein, we characterize CDK12-mutated mCRPC, presenting clinical, genomic, and tumor-infiltrating lymphocyte (TIL) data.Experimental design Patients with mCRPC consented to the molecular analyses of diagnostic and mCRPC biopsies. Genomic analyses involved targeted next-generation (MiSeq; Illumina) and exome sequencing (NovaSeq; Illumina). TILs were assessed by validated immunocytochemistry coupled with deep learning-based artificial intelligence analyses including multiplex immunofluorescence assays for CD4, CD8, and FOXP3 evaluating TIL subsets. The control group comprised a randomly selected mCRPC cohort with sequencing and clinical data available.Results Biopsies from 913 patients underwent targeted sequencing between February 2015 and October 2019. Forty-three patients (4.7%) had tumors with CDK12 alterations. CDK12-altered cancers had distinctive features, with some revealing high chromosomal break numbers in exome sequencing. Biallelic CDK12-aberrant mCRPCs had shorter overall survival from diagnosis than controls [5.1 years (95% confidence interval (CI), 4.0-7.9) vs. 6.4 years (95% CI, 5.7-7.8); hazard ratio (HR), 1.65 (95% CI, 1.07-2.53); P = 0.02]. Median intratumoral CD3+ cell density was higher in CDK12 cancers, although this was not statistically significant (203.7 vs. 86.7 cells/mm2; P = 0.07). This infiltrate primarily comprised of CD4+FOXP3- cells (50.5 vs. 6.2 cells/mm2; P P = 0.077) in the overall population.Conclusions CDK12-altered mCRPCs have worse prognosis, with these tumors surprisingly being primarily enriched for CD4+FOXP3- cells that seem to associate with worse outcome and may be immunosuppressive.See related commentary by Lotan and Antonarakis, p. 380

    Advanced prostate cancer with ATM Loss: PARP and ATR inhibitors

    No full text
    BACKGROUND: Deleterious ATM alterations are found in metastatic prostate cancer (PC); PARP inhibition has antitumour activity against this subset, but only some ATM loss PCs respond. OBJECTIVE: To characterise ATM-deficient lethal PC and to study synthetic lethal therapeutic strategies for this subset. DESIGN, SETTING, AND PARTICIPANTS: We studied advanced PC biopsies using validated immunohistochemical (IHC) and next-generation sequencing (NGS) assays. In vitro cell line models modified using CRISPR-Cas9 to impair ATM function were generated and used in drug-sensitivity and functional assays, with validation in a patient-derived model. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: ATM expression by IHC was correlated with clinical outcome using Kaplan-Meier curves and log-rank test; sensitivity to different drug combinations was assessed in the preclinical models. RESULTS AND LIMITATIONS: Overall, we detected ATM IHC loss in 68/631 (11%) PC patients in at least one biopsy, with synchronous and metachronous intrapatient heterogeneity; 46/71 (65%) biopsies with ATM loss had ATM mutations or deletions by NGS. ATM IHC loss was not associated with worse outcome from advanced disease, but ATM loss was associated with increased genomic instability (NtAI:number of subchromosomal regions with allelic imbalance extending to the telomere, p = 0.005; large-scale transitions, p = 0.05). In vitro, ATM loss PC models were sensitive to ATR inhibition, but had variable sensitivity to PARP inhibition; superior antitumour activity was seen with combined PARP and ATR inhibition in these models. CONCLUSIONS: ATM loss in PC is not always detected by targeted NGS, associates with genomic instability, and is most sensitive to combined ATR and PARP inhibition. PATIENT SUMMARY: Of aggressive prostate cancers, 10% lose the DNA repair gene ATM; this loss may identify a distinct prostate cancer subtype that is most sensitive to the combination of oral drugs targeting PARP and ATR
    corecore