30 research outputs found
Vaccine-Elicited Mucosal and Systemic Antibody Responses Are Associated with Reduced Simian Immunodeficiency Viremia in Infant Rhesus Macaques
ABSTRACT Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4 + T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses
A Recombinant Attenuated Mycobacterium tuberculosis Vaccine Strain Is Safe in Immunosuppressed Simian Immunodeficiency Virus-Infected Infant Macaques
ABSTRACT Many resource-poor countries are faced with concurrent epidemics of AIDS and tuberculosis (TB) caused by human immunodeficiency virus (HIV) and Mycobacterium tuberculosis , respectively. Dual infections with HIV and M. tuberculosis are especially severe in infants. There is, however, no effective HIV vaccine, and the only licensed TB vaccine, the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine, can cause disseminated mycobacterial disease in HIV-infected children. Thus, a pediatric vaccine to prevent HIV and M. tuberculosis infections is urgently needed. We hypothesized that a highly attenuated M. tuberculosis strain containing HIV antigens could be safely administered at birth and induce mucosal and systemic immune responses to protect against HIV and TB infections, and we rationalized that vaccine safety could be most rigorously assessed in immunocompromised hosts. Of three vaccine candidates tested, the recombinant attenuated M. tuberculosis strain mc 2 6435 carrying a simian immunodeficiency virus (SIV) Gag expression plasmid and harboring attenuations of genes critical for replication ( panCD and leuCD ) and immune evasion ( secA2 ), was found to be safe for oral or intradermal administration to non-SIV-infected and SIV-infected infant macaques. Safety was defined as the absence of clinical symptoms, a lack of histopathological changes indicative of M. tuberculosis infection, and a lack of mycobacterial dissemination. These data represent an important step in the development of novel TB vaccines and suggest that a combination recombinant attenuated M. tuberculosis -HIV vaccine could be a safe alternative to BCG for the pediatric population as a whole and, more importantly, for the extreme at-risk group of HIV-infected infants
Immunodominance of HIV-1 Specific CD8+ T-Cell Responses Is Related to Disease Progression Rate in Vertically Infected Adolescents
BACKGROUND: HIV-1 vertically infected children in the USA are living into adolescence and beyond with the widespread use of antiretroviral drugs. These patients exhibit striking differences in the rate of HIV-1 disease progression which could provide insights into mechanisms of control. We hypothesized that differences in the pattern of immunodomination including breadth, magnitude and polyfunctionality of HIV-1 specific CD8+ T cell response could partially explain differences in progression rate. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we mapped, quantified, and assessed the functionality of these responses against individual HIV-1 Gag peptides in 58 HIV-1 vertically infected adolescents. Subjects were divided into two groups depending upon the rate of disease progression: adolescents with a sustained CD4%≥25 were categorized as having no immune suppression (NS), and those with CD4%≤15 categorized as having severe immune suppression (SS). We observed differences in the area of HIV-1-Gag to which the two groups made responses. In addition, subjects who expressed the HLA- B*57 or B*42 alleles were highly likely to restrict their immunodominant response through these alleles. There was a significantly higher frequency of naïve CD8+ T cells in the NS subjects (p = 0.0066) compared to the SS subjects. In contrast, there were no statistically significant differences in any other CD8+ T cell subsets. The differentiation profiles and multifunctionality of Gag-specific CD8+ T cells, regardless of immunodominance, also failed to demonstrate meaningful differences between the two groups. CONCLUSIONS/SIGNIFICANCE: Together, these data suggest that, at least in vertically infected adolescents, the region of HIV-1-Gag targeted by CD8+ T cells and the magnitude of that response relative to other responses may have more importance on the rate of disease progression than their qualitative effector functions
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Selective Loss of Innate CD4(+) Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection
Vα24 natural killer T (NKT) cells are innate immune cells involved in regulation of immune tolerance, autoimmunity, and tumor immunity. However, the effect of human immunodeficiency virus type 1 (HIV-1) infection on these cells is unknown. Here, we report that the Vα24 NKT cells can be subdivided into CD4(+) or CD4(−) subsets that differ in their expression of the homing receptors CD62L and CD11a. Furthermore, both CD4(+) and CD4(−) NKT cells frequently express both CXCR4 and CCR5 HIV coreceptors. We find that the numbers of NKT cells are reduced in HIV-infected subjects with uncontrolled viremia and marked CD4(+) T-cell depletion. The number of CD4(+) NKT cells is inversely correlated with HIV load, indicating depletion of this subset. In contrast, CD4(−) NKT-cell numbers are unaffected in subjects with high viral loads. HIV infection experiments in vitro show preferential depletion of CD4(+) NKT cells relative to regular CD4(+) T cells, in particular with virus that uses the CCR5 coreceptor. Thus, HIV infection causes a selective loss of CD4(+) lymph node homing (CD62L(+)) NKT cells, with consequent skewing of the NKT-cell compartment to a predominantly CD4(−) CD62L(−) phenotype. These data indicate that the key immunoregulatory NKT-cell compartment is compromised in HIV-1-infected patients
Generation of CD8(+) T-Cell Responses by a Recombinant Nonpathogenic Mycobacterium smegmatis Vaccine Vector Expressing Human Immunodeficiency Virus Type 1 Env
Because the vaccine vectors currently being evaluated in human populations all have significant limitations in their immunogenicity, novel vaccine strategies are needed for the elicitation of cell-mediated immunity. The nonpathogenic, rapidly growing mycobacterium Mycobacterium smegmatis was engineered as a vector expressing full-length human immunodeficiency virus type 1 (HIV-1) HXBc2 envelope protein. Immunization of mice with recombinant M. smegmatis led to the expansion of major histocompatibility complex class I-restricted HIV-1 epitope-specific CD8(+) T cells that were cytolytic and secreted gamma interferon. Effector and memory T lymphocytes were elicited, and repeated immunization generated a stable central memory pool of virus-specific cells. Importantly, preexisting immunity to Mycobacterium bovis BCG had only a marginal effect on the immunogenicity of recombinant M. smegmatis. This mycobacterium may therefore be a useful vaccine vector