426 research outputs found
Ionization heating in rare-gas clusters under intense XUV laser pulses
The interaction of intense extreme ultraviolet (XUV) laser pulses
(, \,W/cm) with small rare-gas clusters
(Ar) is studied by quasi-classical molecular dynamics simulations. Our
analysis supports a very general picture of the charging and heating dynamics
in finite samples under short-wavelength radiation that is of relevance for
several applications of free-electron lasers. First, up to a certain photon
flux, ionization proceeds as a series of direct photoemission events producing
a jellium-like cluster potential and a characteristic plateau in the
photoelectron spectrum as observed in [Bostedt {\it et al.}, Phys. Rev. Lett.
{\bf 100}, 013401 (2008)]. Second, beyond the onset of photoelectron trapping,
nanoplasma formation leads to evaporative electron emission with a
characteristic thermal tail in the electron spectrum. A detailed analysis of
this transition is presented. Third, in contrast to the behavior in the
infrared or low vacuum ultraviolet range, the nanoplasma energy capture
proceeds via {\it ionization heating}, i.e., inner photoionization of localized
electrons, whereas collisional heating of conduction electrons is negligible up
to high laser intensities. A direct consequence of the latter is a surprising
evolution of the mean energy of emitted electrons as function of laser
intensity.Comment: figure problems resolve
Troubles with Hiibel: How the Court Inverted the Relationship between Citizens and the State
This essay shows why the Supreme Court’s decision in Hiibel v. Sixth Judicial District of Nevada violates precedent, the Constitution, and the very basis for the relationship between government and the governed. First, the Court has violated the clear limits Terry v. Ohio set on the restricted searches based on reasonable suspicion within the restrictions of the Fourth and Fifth Amendments. By using the power of the state to compel citizens to produce identification, it also violates the First, Fourth, and Fifth Amendments as well as the unenumerated rights that conceptually link the enumerated rights in the Court’s jurisprudence. Finally, this country was founded on the belief that government has to justify itself to the citizens, and the Hiibel decision inverts this relationship. To rectify these transgressions, we argue that the Court should return to the bright-line rule articulated in Terry: The officer may ask; the suspect may remain silent
Optimizing Models of the North Atlantic Spring Bloom Using Physical, Chemical and Bio-Optical Observations from a Lagrangian Float
The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths
Single-particle spectral function for the classical one-component plasma
The spectral function for an electron one-component plasma is calculated
self-consistently using the GW0 approximation for the single-particle
self-energy. In this way, correlation effects which go beyond the mean-field
description of the plasma are contained, i.e. the collisional damping of
single-particle states, the dynamical screening of the interaction and the
appearance of collective plasma modes. Secondly, a novel non-perturbative
analytic solution for the on-shell GW0 self-energy as a function of momentum is
presented. It reproduces the numerical data for the spectral function with a
relative error of less than 10% in the regime where the Debye screening
parameter is smaller than the inverse Bohr radius, kappa<1/a_B. In the limit of
low density, the non-perturbative self-energy behaves as n^(1/4), whereas a
perturbation expansion leads to the unphysical result of a density independent
self-energy [W. Fennel and H. P. Wilfer, Ann. Phys. Lpz._32_, 265 (1974)]. The
derived expression will greatly facilitate the calculation of observables in
correlated plasmas (transport properties, equation of state) that need the
spectral function as an input quantity. This is demonstrated for the shift of
the chemical potential, which is computed from the analytical formulae and
compared to the GW0-result. At a plasma temperature of 100 eV and densities
below 10^21 cm^-3, both approaches deviate less than 10% from each other.Comment: 14 pages, 9 figures accepted for publication in Phys. Rev. E v2:
added section V (application of presented formalism to chemical potential of
the OCP
Recommended from our members
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light
Scheduling with genetic algorithms
In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
When an excited atom is embedded into an environment, novel relaxation
pathways can emerge that are absent for isolated atoms. A well-known example
is interatomic Coulombic decay, where an excited atom relaxes by transferring
its excess energy to another atom in the environment, leading to its
ionization. Such processes have been observed in clusters ionized by extreme-
ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay
process that occurs following nanoplasma formation and Rydberg atom generation
in the ionization of clusters by intense, non-resonant infrared laser fields.
Relaxation of the Rydberg states and transfer of the available electronic
energy to adjacent electrons in Rydberg states or quasifree electrons in the
expanding nanoplasma leaves a distinct signature in the electron kinetic
energy spectrum. These so far unobserved electron-correlation-driven energy
transfer processes may play a significant role in the response of any nano-
scale system to intense laser light
Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes
The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001–2007) compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50%) show that significant variation in the spatial extent of phosphorus limitation (±40% in July) results from changes in phosphate load
Modeling the Dynamics and Export of Dissolved Organic Matter in the Northeastern U.S. Continental Shelf
Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export
- …