4 research outputs found

    HESS Opinions: Are soils overrated in hydrology?

    No full text
    Traditional hydrological theories are based on the assumption that soil is key in determining water's fate in the hydrological cycle. According to these theories, soil hydraulic properties determine water movement in both saturated and unsaturated zones, described by matrix flow formulas such as the Darcy–Richards equations. They also determine plant-available moisture and thereby control transpiration. Here we argue that these theories are founded on a wrong assumption. Instead, we advocate the reverse: the terrestrial ecosystem manipulates the soil to satisfy specific water management strategies, which are primarily controlled by the ecosystem's reaction to climatic drivers and by prescribed boundary conditions such as topography and lithology. According to this assumption, soil hydraulic properties are an effect rather than a cause of water movement. We further argue that the integrated hydrological behaviour of an ecosystem can be inferred from considerations about ecosystem survival and growth without relying on internal-process descriptions. An important and favourable consequence of this climate- and ecosystem-driven approach is that it provides a physical justification for catchment models that do not rely on soil information and on the complexity associated with the description of soil water dynamics. Another consequence is that modelling water movement in the soil, if required, can benefit from the constraints that are imposed by the embedding ecosystem. Here we illustrate our ecosystem perspective of hydrological processes and the arguments that support it. We suggest that advancing our understanding of ecosystem water management strategies is key to building more realistic hydrological theories and catchment models that are predictive in the context of environmental change.Water Resource

    Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai-Tibet Plateau

    No full text
    Increased attention directed at frozen soil hydrology has been prompted by climate change. In spite of an increasing number of field measurements and modeling studies, the impact of frozen soil on hydrological processes at the catchment scale is still unclear. However, frozen soil hydrology models have mostly been developed based on a bottom-up approach, i.e., by aggregating prior knowledge at the pixel scale, which is an approach notoriously suffering from equifinality and data scarcity. Therefore, in this study, we explore the impact of frozen soil at the catchment scale, following a top-down approach, implying the following sequence: expert-driven data analysis → qualitative perceptual model → quantitative conceptual model → testing of model realism. The complex mountainous Hulu catchment, northeast of the Qinghai-Tibet Plateau (QTP), was selected as the study site. First, we diagnosed the impact of frozen soil on catchment hydrology, based on multi-source field observations, model discrepancy, and our expert knowledge. The following two new typical hydrograph properties were identified: The low runoff in the early thawing season (LRET) and the discontinuous baseflow recession (DBR). Second, we developed a perceptual frozen soil hydrological model to explain the LRET and DBR properties. Third, based on the perceptual model and a landscape-based modeling framework (FLEX-Topo), a semi-distributed conceptual frozen soil hydrological model (FLEX-Topo-FS) was developed. The results demonstrate that the FLEX-Topo-FS model can represent the effect of soil freeze-Thaw processes on hydrologic connectivity and groundwater discharge and significantly improve hydrograph simulation, including the LRET and DBR events. Furthermore, its realism was confirmed by alternative multi-source and multi-scale observations, particularly the freezing and thawing front in the soil, the lower limit of permafrost, and the trends in groundwater level variation. To the best of our knowledge, this study is the first report of LRET and DBR processes in a mountainous frozen soil catchment. The FLEX-Topo-FS model is a novel conceptual frozen soil hydrological model which represents these complex processes and has the potential for wider use in the vast QTP and other cold mountainous regions. Water Resource

    Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data

    No full text
    Process-based hydrological models seek to represent the dominant hydrological processes in a catchment. However, due to unavoidable incompleteness of knowledge, the construction of “fidelius” process-based models depends largely on expert judgment. We present a systematic approach that treats models as hierarchical assemblages of hypotheses (conservation principles, system architecture, process parameterization equations, and parameter specification), which enables investigating how the hierarchy of model development decisions impacts model fidelity. Each model development step provides information that progressively changes our uncertainty (increases, decreases, or alters) regarding the input-state-output behavior of the system. Following the principle of maximum entropy, we introduce the concept of “minimally restrictive process parameterization equations—MR-PPEs,” which enables us to enhance the flexibility with which system processes can be represented, and to thereby investigate the important role that the system architectural hypothesis (discretization of the system into subsystem elements) plays in determining model behavior. We illustrate and explore these concepts with synthetic and real-data studies, using models constructed from simple generic buckets as building blocks, thereby paving the way for more-detailed investigations using sophisticated process-based hydrological models. We also discuss how proposed MR-PPEs can bridge the gap between current process-based modeling and machine learning. Finally, we suggest the need for model calibration to evolve from a search over “parameter spaces” to a search over “function spaces.”.Water Resource

    Behind the scenes of streamflow model performance

    No full text
    Streamflow is often the only variable used to evaluate hydrological models. In a previous international comparison study, eight research groups followed an identical protocol to calibrate 12 hydrological models using observed streamflow of catchments within the Meuse basin. In the current study, we quantify the differences in five states and fluxes of these 12 process-based models with similar streamflow performance, in a systematic and comprehensive way. Next, we assess model behavior plausibility by ranking the models for a set of criteria using streamflow and remote-sensing data of evaporation, snow cover, soil moisture and total storage anomalies. We found substantial dissimilarities between models for annual interception and seasonal evaporation rates, the annual number of days with water stored as snow, the mean annual maximum snow storage and the size of the root-zone storage capacity. These differences in internal process representation imply that these models cannot all simultaneously be close to reality. Modeled annual evaporation rates are consistent with Global Land Evaporation Amsterdam Model (GLEAM) estimates. However, there is a large uncertainty in modeled and remote-sensing annual interception. Substantial differences are also found between Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled number of days with snow storage. Models with relatively small root-zone storage capacities and without root water uptake reduction under dry conditions tend to have an empty root-zone storage for several days each summer, while this is not suggested by remote-sensing data of evaporation, soil moisture and vegetation indices. On the other hand, models with relatively large root-zone storage capacities tend to overestimate very dry total storage anomalies of the Gravity Recovery and Climate Experiment (GRACE). None of the models is systematically consistent with the information available from all different (remote-sensing) data sources. Yet we did not reject models given the uncertainties in these data sources and their changing relevance for the system under investigation. Water Resource
    corecore