54 research outputs found

    Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan

    Get PDF
    While chitosan has great potential for biomedical and wider application due to its appealing characteristics such as biocompatibility and inherent antimicrobial activity, its properties usually need to be further tailored for specific uses. In this study, the effect of inclusion of silk peptide (SP) and nanoclays (montmorillonite, MMT and sepiolite, SPT) on the properties of thermomechanically processed chitosan were examined. Blending SP with chitosan led to a material with greater elasticity and surface wettability. For the chitosan matrix, addition of either MMT or SPT resulted in increased mechanical properties with MMT being more effective, likely due to its 2D layered structure. For the chitosan/SP matrix, while inclusion of MMT caused increased mechanical properties and thermal stability, SPT was more effective than MMT at reducing surface hydrophilicity and SPT fully counteracted the increased surface hydrophilicity caused by SP. Thus, this work shows the different effects of MMT and SPT on chitosan-based materials and provides insights into achieving balanced properties

    Ionic liquid (1-ethyl-3-methylimidazolium acetate) plasticization of chitosan-based bionanocomposites

    Get PDF
    The structure and properties of different biopolymer composites based on chitosan and chitosan/carboxymethyl cellulose (CMC) are governed by multiple structure–property relationships associated with different phase interactions. Plasticization of these matrices with ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) played a dominant role, increasing the mobility of biopolymer chains as well as ions and associated dipoles but reducing biopolymer chain interactions, crystallinity, and thermal stability. These structural changes led to higher matrix ionic conductivity, shorter electrical relaxation time, and greater matrix ductility. The inclusion of graphene oxide (GO) and reduced GO (rGO) also influenced the structure and properties of these bionanocomposites by disrupting the biopolymer hydrogen bonding and/or polyelectrolyte complexation (PEC) and interacting with [C2mim][OAc]. The impact of GO/rGO was more evident for 20 wt % [C2mim][OAc], such as increased crystallinity and thermal stability of chitosan. PEC was hindered with excess (40 wt %) [C2mim][OAc] added and further hindered again when rGO was included. This study shows that the structure and properties of bionanocomposites are not just determined by the surface chemistry of GO/rGO but can also be influenced by multiple interactions involving plasticizers such as ILs and additional biopolymers

    Graphene oxide enhanced ionic liquid plasticisation of chitosan/alginate bionanocomposites

    Get PDF
    This study reports that the effect of graphene oxide (GO) or reduced GO (rGO) on the structure and properties of polyelectrolyte-complexed chitosan/alginate bionanocomposites is highly dependent on plasticiser type (glycerol or 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])) due to the competing interactions between the components. For the glycerol-plasticised chitosan/alginate matrix, inclusion of GO/rGO enhanced the chitosan crystallinity and increased matrix ductility. While the chitosan/alginate matrix plasticised by [C2mim][OAc] showed dramatically weakened interactions between the two biopolymers, GO was highly effective at counteracting the effect of [C2mim][OAc] by interacting with the biopolymers and the ionic liquid ions, resulting in enhanced mechanical properties and decreased surface hydrophilicity. Compared with GO, rGO was much less effective at promoting chitosan–alginate interactions and even resulted in higher surface hydrophilicity. However, irrespective of the plasticiser type, inclusion of rGO resulted in reduced crystallinity by restricting the interactions between [C2mim][OAc] and the biopolymers, and higher ionic conductivity

    Effect of Fe intermetallics on microstructure and properties of Al-7Si alloys

    Get PDF
    The present work deals with the effect of iron intermetallics on the microstructure and mechanical properties of Al-7% Si alloys. Two different iron additions were made, 0.6% Fe and 2% Fe, to study the effect of iron intermetallics on Al-Si alloys. Microstructure property correlations were carried out using SEM-EDS and tensile testing of alloys. Microstructure results show that the rise in iron content significantly increased the average size, thickness and number of intermetallic particles in the alloys. Nano-indentation study shows that the iron intermetallics are too brittle compared with the primary aluminium. Moreover, the hardness and Young’s modulus of iron intermetallics are higher than those of primary aluminium. Tensile test results show that there is no significant difference in strength levels between Al-7%Si and Al-7Si-0.6Fe alloys. However, an increase in iron from 0.6% to 2% resulted in a significant decrease in tensile strength and elongation of the alloys. Two-dimensional SEM studies suggest that the increased number of needle-shaped β-phase intermetallic particles formed because of increased amounts of Fe could be the reason for early failure of the alloy. To further understand the early failure of iron-containing alloys, the fractured tensile specimens were studied using the 3D x-ray tomography technique. XCT results show that the failure in tensile testing of 2% Fe alloy was not mainly due to breaking of brittle β-phase intermetallic particles, but due to the morphology and particle-matrix interface debonding. XCT shows that the needle-shaped particles are long, sharp-edged platelets in 3D, which act as stress raisers for crack initiation and propagation along the interphase

    Thermomechanical-induced polyelectrolyte complexation between chitosan and carboxymethyl cellulose enabling unexpected hydrolytic stability

    Get PDF
    Natural biopolymers such as chitosan and cellulose have demonstrated huge potential in important and rapidly growing environmental and biomedical applications. However, it is always challenging to create advanced functional biopolymer materials with enhanced hydrolytic stability cost-effectively. Here, we report an advance in preparing biopolymer polyelectrolyte complexed materials based on chitosan and carboxymethyl cellulose (CMC) using a “dry”, thermo-mechanical kneading method. Despite the high hydrophilicity of chitosan and CMC, the resulting films showed excellent dimensional stability and structural integrity (27% dimensional expansion and 94% weight increase after hydration for one day). In comparison, chitosan-only films were swollen dramatically under the same conditions, with a 138% dimensional expansion and a 913% rise in weight, which were also fragile. We propose that our processing method led to polyelectrolyte complexation between chitosan and CMC generating physical crosslinking points in the materials, which stabilised the films in water. Interestingly, the greater hydrolytic stability of chitosan/CMC films is in contrast with their higher surface hydrophilicity, a contribution from CMC. Our simple approach to engineering high-performance biopolymer materials without resorting to complex chemistries can be envisioned to bring about a new direction in the design of advanced functional materials where sustainability and cost-effectiveness are priorities

    Unexpected plasticization effects on the structure and properties of polyelectrolyte complexed chitosan/alginate materials

    Get PDF
    This work describes the effects of different plasticizers, namely glycerol, triacetin, and 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), on the structure and properties of thermomechanically-processed, bulk chitosan and chitosan/alginate materials. Mechanical data shows that, for the chitosan matrix, glycerol and [C2mim][OAc] were highly effective at reducing intra- and intermolecular forces between biopolymer chains, leading to increased ductility, while the plasticization effect of triacetin was minor. Nonetheless, this triester effectively suppressed biopolymer re-crystallization whereas [C2mim][OAc] promoted it. In contrast, for the chitosan/alginate matrix, inclusion of triacetin resulted in more re-crystallization, higher thermal stability, and excellent mechanical properties. The triacetin assisted the interactions between biopolymer chains in this polyelectrolyte complexed system. In contrast, the chitosan/alginate material plasticized by [C2mim][OAc] displayed the most apparent phase separation, weakest mechanical properties, and highest surface hydrophilicity, behavior associated with the disruption of polyelectrolyte complexation and hydrogen bonding between biopolymer chains. Interestingly, the formation of a “new structure” under the electron beam during microscopy imaging was observed, likely from coordination between alginate and [C2mim][OAc]. Thus, this work has revealed the strong and unexpected effects of three different plasticizers on the hydrogen bonding and electrostatic interactions within chitosan/alginate polyelectrolyte complexed materials, which have potential for biomedical applications where balanced hydrophilicity and mechanical properties are required

    Glycerol plasticisation of chitosan/carboxymethyl cellulose composites : role of interactions in determining structure and properties

    Get PDF
    Biopolymers such as chitosan and cellulose continue to attract much interest as they have many appealing characteristics such as biodegradability, biocompatibility, chemical versatility and natural functionality; however, many of their properties usually require further tailoring for specific purposes. This study shows that glycerol plasticisation and the addition of graphene oxide (GO) or reduced graphene oxide (rGO) altered the properties of chitosan and a chitosan/carboxymethyl cellulose (CMC) blend. For the chitosan/CMC matrix, GO or rGO was likely to disrupt polyelectrolyte complexation (PEC) between the two biopolymers, leading to weakened mechanical properties and increased surface hydrophilicity. Conversely, glycerol assisted PEC by increasing the biopolymer chain mobility, leading to reduced surface hydrophilicity. Moreover, some synergistic effects from a combination of glycerol and GO/rGO were evident. Specifically, GO/rGO notably increased the toughness of the chitosan film on inclusion of 40 wt% glycerol. Both GO and rGO reduced the relaxation temperatures of the chitosan/CMC film with 20 wt% glycerol added, resulting in increased biopolymer chain mobility. Moreover, the bionanocomposites showed high relative permittivity (54–387). Thus, this work describes how complex interactions in multiphasic biopolymer composite systems influence structure and properties

    Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites

    Get PDF
    Bionanocomposites of chitosan and chitosan/carboxymethyl cellulose (CMC) polyelectrolyte complexed materials with graphene oxide (GO) or reduced graphene oxide (rGO) were prepared by thermomechanical processing with excellent levels of dispersion. While GO has a greater affinity with the chitosan polycation, rGO had a more pronounced effect on properties resulting in increased tensile strength, Shore D hardness, and thermal stability of both matrices. Although GO is more hydrophilic than rGO, the former increased more effectively the surface hydrophobicity of the biocomposites regardless of matrix type. GO and rGO changed the α-transition of the biocomposites in a similar manner. The electrochemical properties of the biocomposites were influenced by both nanofiller type and matrix. This research revealed that inclusion of 2D carbon nanomaterials can alter biopolymer interactions and that the phase structure of the biopolymer blend may play a more important role than nanofiller–matrix interactions in determining the overall properties of these bionanocomposites

    Chitosan-based electroconductive inks without chemical reaction for cost-effective and versatile 3D printing for electromagnetic interference (EMI) shielding and strain-sensing applications

    Get PDF
    The burgeoning interest in biopolymer 3D printing arises from its capacity to meticulously engineer tailored, intricate structures, driven by the intrinsic benefits of biopolymers—renewability, chemical functionality, and biosafety. Nevertheless, the accessibility of economical and versatile 3D-printable biopolymer-based inks remains highly constrained. This study introduces an electroconductive ink for direct-ink-writing (DIW) 3D printing, distinguished by its straightforward preparation and commendable printability and material properties. The ink relies on chitosan as a binder, carbon fibers (CF) a low-cost electroactive filler, and silk fibroin (SF) a structural stabilizer. Freeform 3D printing manifests designated patterns of electroconductive strips embedded in an elastomer, actualizing effective strain sensors. The ink's high printability is demonstrated by printing complex geometries with porous, hollow, and overhanging structures without chemical or photoinitiated reactions or support baths. The composite is lightweight (density 0.29 ± 0.01 g/cm3), electroconductive (2.64 ± 0.06 S/cm), and inexpensive (20 USD/kg), with tensile strength of 20.77 ± 0.60 MPa and Young's modulus of 3.92 ± 0.06 GPa. 3D-printed structures exhibited outstanding electromagnetic interference (EMI) shielding effectiveness of 30–31 dB, with shielding of &gt;99.9 % incident electromagnetic waves, showcasing significant electronic application potential. Thus, this study presents a novel, easily prepared, and highly effective biopolymer-based ink poised to advance the landscape of 3D printing technologies.</p

    Cooperative effects of cellulose nanocrystals and sepiolite when combined on ionic liquid plasticised chitosan materials

    Get PDF
    Cellulose nanocrystals (CNCs) and/or sepiolite (SPT) were thermomechanically mixed with un-plasticised chitosan and chitosan/carboxymethyl cellulose (CMC) blends plasticised with 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). Examination of the morphology of these materials indicates that SPT aggregates were reduced when CNCs or [C2mim][OAc] were present. Inclusion of CNCs and/or SPT had a greater effect on material properties when the matrices were un-plasticised. Addition of SPT or CNCs altered the crystalline structure of the un-plasticised chitosan matrix. Moreover, a combination of SPT and CNCs was more effective at suppressing re-crystallisation. Nonetheless, the mechanical properties and surface hydrophobicity were more related to CNC/SPT–biopolymer interactions. The un-plasticised bionanocomposites generally showed increased relaxation temperatures, enhanced tensile strength, and reduced surface wettability. For the [C2mim][OAc] plasticised matrices, the ionic liquid (IL) dominates the interactions with the biopolymers such that the effect of the nanofillers is diminished. However, for the [C2mim][OAc] plasticised chitosan/CMC matrix, CNCs and SPT acted synergistically suppressing re-crystallisation but resulting in increased tensile strength
    • …
    corecore