54 research outputs found
Directional trans-planar and different in-plane water transfer properties of composite structured bifacial fabrics modified by a facile three-step plasma treatment
Fabrics with moisture management properties are strongly expected to benefit various potential applications in daily life, industry, medical treatment and protection. Here, a bifacial fabric with dual trans-planar and in-plane liquid moisture management properties was reported. This novel fabric was fabricated to have a knitted structure on one face and a woven structure on the other, contributing to the different in-plane water transfer properties of the fabric. A facile three-step plasma treatment was used to enrich the bifacial fabric with asymmetric wettability and liquid absorbency. The plasma treated bifacial fabric allowed forced water to transfer from the hydrophobic face to hydrophilic face, while it prevented water to spread through the hydrophobic face when water drops were placed on the hydrophilic face. This confirmed one-way water transport capacity of the bifacial fabric. Through the three-step plasma treatment, the fabric surface was coated with a Si-containing thin film. This film contributed to the hydrophobic property, while the physical properties of the fabrics such as stiffness and color were not affected. This novel fabric can potentially be used to design and manufacture functional and smart textiles with tunable moisture transport properties
Effect of meso-scale structures and hyper-viscoelastic mechanics on the nonlinear tensile stability and hysteresis of woven materials
Woven textiles are not only a craft and industrial product but also a thousand-year-old crystallization of human technology. However, the highly sought after mechanical behavior of fabric, generally undergoing large structural distortion along with material deformation even under small stress, is still not clearly understood despite a growing interest in emerging applications, such as flexible electron devices, biomedicine and other engineering fields. Herein, a numerical methodology was introduced to strengthen the comprehensive understanding of the synergy effect of material mechanics and mesostructures of woven materials. A hyper-viscoelastic constitutive model for yarn materials was proposed, and a meso-scale geometry model captured from a resin-cured woven fabric was used, down to micron-sized weaving structures, to investigate the uniaxial loading and unloading process based on finite element (FE) method. The tensile and hysteresis mechanics was identified based on the validated FE model and parameter study of friction effect and fabric structures. The nonlinear tensile and recovery behaviors were reasonably represented by the developed models and the synergistic effect of inner yarn friction and viscoelasticity on the hysteresis was proved. This study can provide an effective method to analyze and predict the nonlinear tensile and hysteresis behavior of woven fabric, laying down the way to textile-based strain sensing materials by enhancing our design and tuning capabilities of the dimension stability of woven materials under tension
Research on Error Estimations of the Interpolating Boundary Element Free-Method for Two-Dimensional Potential Problems
The interpolating boundary element-free method (IBEFM) is a direct solution method of the meshless boundary integral equation method, which has high efficiency and accuracy. The IBEFM is developed based on the interpolating moving least-squares (IMLS) method and the boundary integral equation method. Since the shape function of the IMLS method satisfies the interpolation characteristics, the IBEFM can directly and accurately impose the essential boundary conditions, which overcomes the shortcomings of the original boundary element-free method in enforcing the essential boundary approximately. This paper will study the error estimations of the IBEFM for two-dimensional potential problems and the relationship between the errors and the influence radius and the condition number of the coefficient matrix. Two numerical examples are presented to verify the correctness of the theoretical results in this paper
A Dimension Splitting-Interpolating Moving Least Squares (DS-IMLS) Method with Nonsingular Weight Functions
By introducing the dimension splitting method (DSM) into the improved interpolating moving least-squares (IMLS) method with nonsingular weight function, a dimension splitting–interpolating moving least squares (DS-IMLS) method is first proposed. Since the DSM can decompose the problem into a series of lower-dimensional problems, the DS-IMLS method can reduce the matrix dimension in calculating the shape function and reduce the computational complexity of the derivatives of the approximation function. The approximation function of the DS-IMLS method and its derivatives have high approximation accuracy. Then an improved interpolating element-free Galerkin (IEFG) method for the two-dimensional potential problems is established based on the DS-IMLS method. In the improved IEFG method, the DS-IMLS method and Galerkin weak form are used to obtain the discrete equations of the problem. Numerical examples show that the DS-IMLS and the improved IEFG methods have high accuracy
A Lightweight Sensitive Triboelectric Nanogenerator Sensor for Monitoring Loop Drive Technology in Table Tennis Training
As the Internet of Things becomes more and more mainstream, sensors are widely used in the field of motion monitoring. In this paper, we propose a lightweight and sensitive triboelectric nanogenerator (LS-TENG) consisting of transparent polytetrafluoroethylene (PTFE) and polyamide (PA) films as triboelectric layers, polydimethylsiloxane (PDMS) as support layer, and copper foil as electrode. LS-TENG can be attached to the joints of the human body, and the mechanical energy generated by human motion is converted into electric energy based on the triboelectric effect, thus realizing self-power supply. LS-TENG can monitor the angle changes in elbow and wrist joints when athletes pull the loop and actively generate the output voltage as a sensing signal, which is convenient for coaches to monitor the quality of athletes’ hitting in real time. In addition, LS-TENG can also be used as a power supply for other wireless electronic devices, which facilitates the construction and transmission of large motion data and opens up a new development direction for the field of motion monitoring
A Dimension Splitting Generalized Interpolating Element-Free Galerkin Method for the Singularly Perturbed Steady Convection–Diffusion–Reaction Problems
By introducing the dimension splitting method (DSM) into the generalized element-free Galerkin (GEFG) method, a dimension splitting generalized interpolating element-free Galerkin (DS-GIEFG) method is presented for analyzing the numerical solutions of the singularly perturbed steady convection–diffusion–reaction (CDR) problems. In the DS-GIEFG method, the DSM is used to divide the two-dimensional CDR problem into a series of lower-dimensional problems. The GEFG and the improved interpolated moving least squares (IIMLS) methods are used to obtain the discrete equations on the subdivision plane. Finally, the IIMLS method is applied to assemble the discrete equations of the entire problem. Some examples are solved to verify the effectiveness of the DS-GIEFG method. The numerical results show that the numerical solution converges to the analytical solution with the decrease in node spacing, and the DS-GIEFG method has high computational efficiency and accuracy
A Lightweight Sensitive Triboelectric Nanogenerator Sensor for Monitoring Loop Drive Technology in Table Tennis Training
As the Internet of Things becomes more and more mainstream, sensors are widely used in the field of motion monitoring. In this paper, we propose a lightweight and sensitive triboelectric nanogenerator (LS-TENG) consisting of transparent polytetrafluoroethylene (PTFE) and polyamide (PA) films as triboelectric layers, polydimethylsiloxane (PDMS) as support layer, and copper foil as electrode. LS-TENG can be attached to the joints of the human body, and the mechanical energy generated by human motion is converted into electric energy based on the triboelectric effect, thus realizing self-power supply. LS-TENG can monitor the angle changes in elbow and wrist joints when athletes pull the loop and actively generate the output voltage as a sensing signal, which is convenient for coaches to monitor the quality of athletes’ hitting in real time. In addition, LS-TENG can also be used as a power supply for other wireless electronic devices, which facilitates the construction and transmission of large motion data and opens up a new development direction for the field of motion monitoring
A Self-Powered Triboelectric Nanogenerator Based on Intelligent Interactive System for Police Shooting Training Monitoring and Virtual Reality Interaction
A self-powered triboelectric nanogenerator (SPTENG) based on triboelectric effect and an intelligent interactive system are fabricated for monitoring shooting training and virtual training. The SPTENG is composed of latex and PTFE and an intelligent system. Based on triboelectric effect, the SPTENG can be used to monitor the progress of trigger pressing without a power supply (this is supplied by trigger movements). Because of the flexible properties, it can be attached to a trigger conveniently to monitor the progress of trigger pressing, such as trigger time, trigger stability, etc. Meanwhile, as part of an intelligent shooting system, police can formulate a standard scheme according to signals to improve their skills. Furthermore, they can use it to train between reality and virtuality. Therefore, it has a wide development space in human–computer interaction and real-time information processing
- …