69 research outputs found

    The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges

    Get PDF
    Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine

    Global Existence of Cylinder Symmetric Solutions for the Nonlinear Compressible Navier-Stokes Equations

    Get PDF
    We prove the global existence of cylinder symmetric solutions to the compressible Navier-Stokes equations with external forces and heat source in R3 for any large initial data. Some new ideas and more delicate estimates are used to prove this result

    Nonreciprocal Amplification Transition in a Driven-Dissipative Quantum Network

    Full text link
    We study the transport properties of a driven-dissipative quantum network, where multiple bosonic cavities such as photonic microcavities are coupled through a nonreciprocal bus with unidirectional transmission. For short-range coupling between the cavities, the occurrence of nonreciprocal amplification can be linked to a topological phase transition of the underlying dynamic Hamiltonian. However, for long-range coupling, we find that the nonreciprocal amplification transition deviates drastically from the topological phase transition. Nonetheless, we show that the nonreciprocal amplification transition can be connected to the emergence of zero-energy edge states of an auxiliary Hamiltonian with chiral symmetry even in the long-range coupling limit. We also investigate the stability, the crossover from short to long-range coupling, and the bandwidth of the nonreciprocal amplification. Our work has potential application in signal transmission and amplification, and also opens a window to non-Hermitian systems with long-range coupling and nontrivial boundary effects.Comment: 5 pages, 4 figure

    Poly(ADP-ribose) Polymerase 1 Is Indispensable for Transforming Growth Factor-β Induced Smad3 Activation in Vascular Smooth Muscle Cell

    Get PDF
    BACKGROUND: Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. CONCLUSIONS: PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway

    Prevalence and prognosis of molecularly defined familial hypercholesterolemia in patients with acute coronary syndrome

    Get PDF
    BackgroundFamilial hypercholesterolemia (FH) can elevate serum low-density lipoprotein cholesterol (LDL-C) levels, which can promote the progression of acute coronary syndrome (ACS). However, the effect of FH on the prognosis of ACS remains unclear.MethodsIn this prospective cohort study, 223 patients with ACS having LDL-C ≥ 135.3 mg/dL (3.5 mmol/L) were enrolled and screened for FH using a multiple-gene FH panel. The diagnosis of FH was defined according to the ACMG/AMP criteria as carrying pathogenic or likely pathogenic variants. The clinical features of FH and the relationship of FH to the average 16.6-month risk of cardiovascular events (CVEs) were assessed.ResultsThe prevalence of molecularly defined FH in enrolled patients was 26.9%, and coronary artery lesions were more severe in patients with FH than in those without (Gensini score 66.0 vs. 28.0, respectively; P < 0.001). After lipid lowering, patients with FH still had significantly higher LDL-C levels at their last visit (73.5 ± 25.9 mg/dL vs. 84.7 ± 37.1 mg/dL; P = 0.013) compared with those without. FH increased the incidence of CVEs in patients with ACS [hazard ratio (HR): 3.058; 95% confidence interval (CI): 1.585–5.900; log-rank P < 0.001].ConclusionFH is associated with an increased risk of CVEs in ACS and is an independent risk factor for ACS. This study highlights the importance of genetic testing of FH-related gene mutations in patients with ACS

    Case report: Surgical repair of congenitally corrected transposition of the great arteries with the guidance of three-dimensional printing

    Get PDF
    A 10-year-old girl presented with obvious cyanosis, and the saturation of arterial blood oxygen (SpO2) was decreased to 60.5% in the outpatient examination. Computed tomography angiography (CTA) and echocardiography suggested congenitally corrected transposition of the great arteries (ccTGAs), membranous ventricular septal aneurysm (MVSA), atrial septal defect (ASD), severe pulmonary stenosis (PS), and severe tricuspid regurgitation (TR). Due to the complex pathological anatomical structures, the three-dimensional printed model was used for preoperative assessment. After a comprehensive evaluation was completed, the operation was performed by physiological correction under cardiopulmonary bypass, including the resection of MVSA, repair using the bovine pericardial patch for ASD, and linear valvuloplasty of the tricuspid valve. Due to the special anatomical structures of ccTGA, PS was treated by extracardiac pipe technique. After the operation, the patient recovered well, cyanosis disappeared, SpO2 was up to 96%, and the extracardiac pipe was well-functioning without regurgitation or obstruction

    Invasive alien plants are phylogenetically distinct from other alien species across spatial and taxonomic scales in China

    Get PDF
    IntroductionPhylogenetic relatedness is one of the important factors in the community assembly process. Here, we aimed to understand the large-scale phylogenetic relationship between alien plant species at different stages of the invasion process and how these relationships change in response to the environmental filtering process at multiple spatial scales and different phylogenetic extents.MethodsWe identified the alien species in three invasion stages, namely invasive, naturalized, and introduced, in China. The occurrence records of the species were used to quantify two abundance-based phylogenetic metrics [the net relatedness index (NRI) and the nearest taxon index (NTI)] from a highly resolved phylogenetic tree. The metrics were compared between the three categories of alien species. Generalized linear models were used to test the effect of climate on the phylogenetic pattern. All analyses were conducted at four spatial scales and for three major angiosperm families.ResultsWe observed significantly higher NRI and NTI values at finer spatial scales, indicating the formation of more clustered assemblages of phylogenetically closely related species in response to the environmental filtering process. Positive NTI values for the invasive and naturalized aliens suggested that the presence of a close relative in the community may help the successful naturalization and invasion of the introduced alien species. In the two-dimensional phylogenetic space, the invasive species communities significantly differed from the naturalized and introduced species, indicating that established alien species need to be phylogenetically different to become invasive. Positive phylogenetic measures for the invasive aliens across the spatial scales suggested that the presence of invasive aliens could facilitate the establishment of other invasive species. Phylogenetic relatedness was more influenced by temperature than precipitation, especially at a finer spatial scale. With decreased temperature, the invasive species showed a more clustered assemblage, indicating conservatism of their phylogenetic niche. The phylogenetic pattern was different at the family level, although there was a consistent tendency across families to form more clustered assemblages.DiscussionOverall, our study showed that the community assemblage became more clustered with the progression of the invasion process. The phylogenetic measures varied at spatial and taxonomic scales, thereby highlighting the importance of assessing phylogenetic patterns at different gradients of the community assembly process

    肝爽颗粒联合阿德福韦酯治疗肝纤维化的疗效分析

    No full text
    ObjectiveTo observe the therapeutic efficacy of Ganshuang granules in the treatment of hepatic fibrosis. MethodsSixty-eight patients with cirrhosis due to chronic hepatitis B (CHB) were divided into experimental group (n=34) and control group (n=34). Both groups received adefovir dipivoxil for 6 months, and the experimental group received Ganshuang granules additionally for 24 weeks. After treatment, the changes in hepatic fibrosis indices including hyaluronic acid (HA), laminin (LN), collagen Ⅳ (C Ⅳ), and precollagen Ⅲ (PC Ⅲ), as well as liver stiffness value were evaluated by paired t test. ResultsIn the experimental group, the serum levels of HA, LN, C Ⅳ, and PC Ⅲ were significantly decreased by 37.5%, 34.2%, 35.4%, and 39.9%, respectively (t=2.238, 2.151, 2.148, and 2.198, P<005 for all), and the liver stiffness value was significantly cut by 40.6% (t=2.189, P<0.05). However, the control group showed no significant changes in these indices. ConclusionFor patients with cirrhosis due to CHB, Ganshuang granules can effectively reduce serum markers of hepatic fibrosis and liver stiffness value and have a good therapeutic efficacy in the treatment of hepatic fibrosis

    Proteomic analysis of neonatal mouse hearts shows PKA functions as a cardiomyocyte replication regulator

    No full text
    Abstract The ability of the adult mammalian heart to regenerate can save the cardiac muscle from a loss of function caused by injury. Cardiomyocyte regeneration is a key aspect of research for the treatment of cardiovascular diseases. The mouse heart shows temporary regeneration in the first week after birth; thus, the newborn mouse heart is an ideal model to study heart muscle regeneration. In this study, proteomic analysis was used to investigate the differences in protein expression in the hearts of neonatal mice at days 1 (P1 group), 4 (P4 group), and 7 (P7 group). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed changes in several groups of proteins, including the protein kinase A (PKA) signaling pathway. Moreover, it was found that PKA inhibitors and agonists regulated cardiomyocyte replication in neonatal mouse hearts. These findings suggest that PKA may be a target for the regulation of the cardiomyocyte cell cycle
    corecore