41 research outputs found

    A Novel User Experience Cloud Computing Model for Examining Brand Image Through Virtual Reality

    Get PDF
    This research paper presents a novel Cloud Computing User Experience (CCUE) approach to reconstructing the brand image of traditional Shanghai cosmetic brands by leveraging virtual reality (VR) technology and user experience (UX) research. Traditional Shanghai cosmetic brands possess rich cultural heritage and unique product offerings, but often face challenges in maintaining relevance in the modern market. The proposed CCUE uses the VR technology to create immersive and interactive experiences that allow consumers to explore and engage with the brand in a virtual environment. The developed CCUE model integrates the Artificial Intelligence (AI) integrated Imperialist Competitive Algorithm (ICA) for the user-machine interaction. With the CCUE a combination of VR simulations, product showcases, and interactive storytelling, users can experience the essence and history of traditional Shanghai cosmetic brands, fostering a deep connection and emotional attachment. Additionally, UX research techniques are employed to gather user feedback and insights, enabling the refinement and optimization of the VR experience. The findings of this CCUE contribute to the field of brand reconstruction and provide practical insights for traditional brands seeking to revitalize their image in a rapidly evolving market

    Quasi-MSn identification of flavanone 7-glycoside isomers in Da Chengqi Tang by high performance liquid chromatography-tandem mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Da Chengqi Tang </it>(DCT) is a common purgative formula in Chinese medicine. Flavanones are its major active compounds derived from <it>Fructus Aurantii Immaturus</it>. The present study developed an LC-MS/MS method to characterize two pairs of flavanone 7-glycoside isomers, i.e., hesperidin versus neohesperidin and naringin versus isonaringin.</p> <p>Methods</p> <p>After solid phase purification, components in sample were separated on a Agilent zorbax SB-C18 (5 μm, 250 mm × 4.6 mm) analytical column. ESI-MS and quasi-MS<sup>n </sup>were performed in negative ion mode to obtain structural data of these two pairs of flavanone 7-glycoside isomers. Moreover, UV absorption was measured.</p> <p>Results</p> <p>There was no intra-pairs difference in the UV-Vis and MS/MS spectra of the two pairs of 7-glycoside isomers, whereas the mass spectrometry fragmentation pathways between pairs were different.</p> <p>Conclusion</p> <p>The present study developed a LC-MS/MS method to explore the inter- and intra-pair difference of two pairs of flavanone 7-glycoside isomers.</p

    What role does syntax play in a language network?

    No full text
    That almost all language networks are small-world and scale-free raises the question of whether syntax plays a role to measure the complexity of a language network. To answer this question, we built up two random language (dependency) networks based on a dependency syntactic network and investigated the complexity of these three language networks to see if the non-syntactic ones have network indicators similar to the syntactic one. The results show that all the three networks are small-world and scale-free. While syntax influences the indicators of a complex network, scale-free is only a necessary but not sufficient condition to judge whether a network is syntactic or non-syntactic. The network analysis focuses on the global organization of a language, it may not reflect the subtle syntactic differences of the sentence structure

    Platycodin D inhibits MPP +

    No full text

    Electrodeposition of Zn–Ta Coating from DMI–ZnCl2–TaCl5 Solvate Ionic Liquids

    No full text
    In this work, the Zn–Ta coating was electrodeposited from DMI–ZnCl2–TaCl5 solvate ionic liquid. The electrochemical reaction was studied by cyclic voltammetry using titanium as working electrode. The onset potential of zinc and tantalum co-deposition was −0.7 V (vs. Ag). Moreover, potentiostatic electrodeposition experiments were conducted to investigate the influence of potential and temperature on the morphology of the coating. X-ray photoelectron spectroscopy analysis confirmed that the coating obtained by electrodeposition at −1.6 V (vs. Ag) and 353 K was composed of Zn, Ta, ZnO, and Ta2O5. The mass fraction of element tantalum was 6.21 %, and metallic tantalum accounted for 11.54 % of the mass of element tantalum. The corrosion current density of the Zn–Ta coating was 1.83 × 10−4 A cm−2

    Electrodeposition of Copper Metal from the 1-Ethyl-3-methylimidazolium Fluoride ([EMIM]F)-urea-H2O System Containing Cu2O

    No full text
    In this work, [EMIM]F-urea-H2O system is capable of dissolving Cu2O, and then the metallic copper was electrodeposited from this system at room temperature. The reduction of Cu (I) in this system involves a quasi-reversible and one-step single-electron transfer process. The electrodeposition of copper was performed on a tungsten (W) substrate at −0.67 V (vs. Ag) and 353 K via potentiostatic electrolysis. The electrodeposits were identified as metallic copper, as verified by XRD and EDS. SEM image shows that uniform, polygonal nanoparticles of copper were obtained after the potentiostatic static electrolysis

    Research on improving measurement stability of mine-used X-ray nuclear scale

    No full text
    In order to improve measurement stability of mine-used X-ray nuclear scale, specific methods were given from two aspects of explosion-proof X-ray source and measurement zero point. Energy and intensity of X-ray which are output from X-ray source are monitored by X-ray detector, and the monitored X-ray parameters are received by monitoring network module which is installed in X-ray source. By comparing the monitored X-ray parameters with the set X-ray parameters, tube voltage and tube current of the explosion-proof X-ray source are controlled to keep stable of X-ray parameters. Source intensity zero point is defined by average value of the tube voltage and the tube current of the explosion-proof X-ray source. X-ray parameters are collected in real time through the X-ray detector and compared with measurement zero point and the source intensity zero point, so as to adjust the measurement zero point and the source intensity zero point to overcome influence of conveyor condition change and X-ray tube aging on the measurement zero point. The test result shows that the methods can effectively improve X-ray stability and ensure measurement stability of mine-used X-ray nuclear scale

    Temperature Dependence on Density, Viscosity, and Electrical Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride

    No full text
    Ionic liquids are considered environmentally friendly media for various industrial applications. Basic data on physicochemical properties are significant for a new material, in terms of developing its potential applications. In this work, 1-ethyl-3-methylimidazolium fluoride ([EMIm]F) ionic liquid was synthesized via an anion metathesis process. Physical properties including the density, viscosity, electrical conductivity, and thermal stability of the product were measured. The results show that the density of [EMIm]F decreases linearly with temperature increases, while dynamic viscosity decreases rapidly below 320 K and the temperature dependence of electrical conductivity is in accordance with the VFT (Vogel–Fulcher–Tammann) equation. The temperature dependence of the density, conductivity, and viscosity of [EMIm]F can be expressed via the following equations: ρ = 1.516 − 1.22 × 10−3 T, σm = 4417.1exp[−953.17/(T − 166.65)] and η = 2.07 × 10−7exp(−5.39 × 104/T), respectively. [EMIm]F exhibited no clear melting point. However, its glass transition point and decomposition temperature are −71.3 °C and 135 °C, respectively

    Magnetic energy-based understanding the mechanism of magnetothermal anisotropy for macroscopically continuous film of assembled Fe3O4 nanoparticles

    No full text
    The magnetothermal effect in two-dimensional assemblies of magnetic nanoparticles has played an increasingly important role in many biomedical applications. However, determining the mechanism of magnetothermal conversion of the assembled magnetic nanoparticles remains challenging. Here, a macroscopically continuous film assembled of Fe3O4 nanoparticles was used as a model for investigation utilizing both simulation and experimentation. The magnetic energy simulated by micro-magnetics can explain the phenomenon in which the assembled film of Fe3O4 nanoparticles showed the magnetothermal anisotropy in the presence of an alternating magnetic field. Here, the magnetic interaction between nanoparticles is proposed to play an important role in this process. Furthermore, it was discovered that there is a common behaviour of magnetic moments for the macroscopically continuous nanogranular film and a bulk magnet, which can be exploited to manipulate the magnetothermal effect of nanomaterials
    corecore