28,298 research outputs found
Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions
We modified the gluon saturation model by rescaling the momentum fraction
according to saturation momentum and introduced the Cooper-Frye hydrodynamic
evolution to systematically study the pseudo-rapidity distributions of final
charged hadrons at different energies and different centralities for Au-Au
collisions in relativistic heavy-ion collisions at BNL Relativistic Heavy Ion
Collider (RHIC). The features of both gluon saturation and hydrodynamic
evolution at different energies and different centralities for Au-Au collisions
are investigated in this paper.Comment: 14 pages, 4 figure
Collective Flow Distributions and Nuclear Stopping in Heavy-ion Collisions at AGS, SPS and RHIC
We study the production of proton, antiproton and net-proton at \AGS, \SPS
and \RHIC within the framework non-uniform flow model(NUFM) in this paper. It
is found that the system of RHIC has stronger longitudinally non-uniform
feature than AGS and SPS, which means that nuclei at RHIC energy region is much
more transparent. The NUFM model provides a very good description of all proton
rapidity at whole AGS, SPS and RHIC. It is shown that our analysis relates
closely to the study of nuclear stopping and longitudinally non-uniform flow
distribution of experiment. This comparison with AGS and SPS help us to
understand the feature of particle stopping of thermal freeze-out at RHIC
experiment.Comment: 16 pages,7 figure
A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object
A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac
Excitation of nonlinear ion acoustic waves in CH plasmas
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field
is demonstrated by Vlasov simulation. The frequency calculated by the
dispersion relation with no damping is verified much closer to the resonance
frequency of the small-amplitude nonlinear IAW than that calculated by the
linear dispersion relation. When the wave number increases,
the linear Landau damping of the fast mode (its phase velocity is greater than
any ion's thermal velocity) increases obviously in the region of in which the fast mode is weakly damped mode. As a result, the deviation
between the frequency calculated by the linear dispersion relation and that by
the dispersion relation with no damping becomes larger with
increasing. When is not large, such as , the nonlinear IAW can be excited by the driver with the linear frequency
of the modes. However, when is large, such as
, the linear frequency can not be applied to exciting the
nonlinear IAW, while the frequency calculated by the dispersion relation with
no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1
Exotic phase diagram of a topological quantum system
We study the quantum phase transitions (QPTs) in the Kitaev spin model on a
triangle-honeycomb lattice. In addition to the ordinary topological QPTs
between Abelian and non-Abelian phases, we find new QPTs which can occur
between two phases belonging to the same topological class, namely, either two
non-Abelian phases with the same Chern number or two Abelian phases with the
same Chern number. Such QPTs result from the singular behaviors of the nonlocal
spin-spin correlation functions at the critical points.Comment: 10 pages, 5 figure
Exploiting Trust Degree for Multiple-Antenna User Cooperation
For a user cooperation system with multiple antennas, we consider a trust
degree based cooperation techniques to explore the influence of the
trustworthiness between users on the communication systems. For the system with
two communication pairs, when one communication pair achieves its quality of
service (QoS) requirement, they can help the transmission of the other
communication pair according to the trust degree, which quantifies the
trustworthiness between users in the cooperation. For given trust degree, we
investigate the user cooperation strategies, which include the power allocation
and precoder design for various antenna configurations. For SISO and MISO
cases, we provide the optimal power allocation and beamformer design that
maximize the expected achievable rates while guaranteeing the QoS requirement.
For a SIMO case, we resort to semidefinite relaxation (SDR) technique and block
coordinate update (BCU) method to solve the corresponding problem, and
guarantee the rank-one solutions at each step. For a MIMO case, as MIMO is the
generalization of MISO and SIMO, the similarities among their problem
structures inspire us to combine the methods from MISO and SIMO together to
efficiently tackle MIMO case. Simulation results show that the trust degree
information has a great effect on the performance of the user cooperation in
terms of the expected achievable rate, and the proposed user cooperation
strategies achieve high achievable rates for given trust degree.Comment: 15 pages,9 figures, to appear in IEEE Transactions on Wireless
communication
Determination of Intrinsic Ferroelectric Polarization in Orthorhombic Manganites with E-type Spin Order
By directly measuring electrical hysteresis loops using the Positive-Up
Negative-Down (PUND) method, we accurately determined the remanent
ferroelectric polarization Pr of orthorhombic RMnO3 (R = Ho, Tm, Yb, and Lu)
compounds below their E-type spin ordering temperatures. We found that LuMnO3
has the largest Pr of 0.17 uC/cm^2 at 6 K in the series, indicating that its
single-crystal form can produce a Pr of at least 0.6 \muuC/cm^2 at 0 K.
Furthermore, at a fixed temperature, Pr decreases systematically with
increasing rare earth ion radius from R = Lu to Ho, exhibiting a strong
correlation with the variations in the in-plane Mn-O-Mn bond angle and Mn-O
distances. Our experimental results suggest that the contribution of the Mn t2g
orbitals dominates the ferroelectric polarization.Comment: 16 pages, 4 figure
- …