1,580 research outputs found

    Measuring Slepton Masses and Mixings at the LHC

    Get PDF
    Flavor physics may help us understand theories beyond the standard model. In the context of supersymmetry, if we can measure the masses and mixings of sleptons and squarks, we may learn something about supersymmetry and supersymmetry breaking. Here we consider a hybrid gauge-gravity supersymmetric model in which the observed masses and mixings of the standard model leptons are explained by a U(1) x U(1) flavor symmetry. In the supersymmetric sector, the charged sleptons have reasonably large flavor mixings, and the lightest is metastable. As a result, supersymmetric events are characterized not by missing energy, but by heavy metastable charged particles. Many supersymmetric events are therefore fully reconstructible, and we can reconstruct most of the charged sleptons by working up the long supersymmetric decay chains. We obtain promising results for both masses and mixings, and conclude that, given a favorable model, precise measurements at the LHC may help shed light not only on new physics, but also on the standard model flavor parameters.Comment: 24 pages; v2: fixed a typo in our computer program that led to some miscalculated branching ratios, various clarifications and minor improvements, conclusions unchanged, published versio

    Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry

    Get PDF
    We investigate supersymmetric scenarios in which neutrino masses are generated by effective d=6 operators in the Kahler potential, rather than by the standard d=5 superpotential operator. First, we discuss some general features of such effective operators, also including SUSY-breaking insertions, and compute the relevant renormalization group equations. Contributions to neutrino masses arise at low energy both at the tree level and through finite threshold corrections. In the second part we present simple explicit realizations in which those Kahler operators arise by integrating out heavy SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge, depending on the mechanism and the scale of SUSY-breaking mediation. In particular, we propose an appealing and economical picture in which the heavy seesaw mediators are also messengers of SUSY breaking. In this case, strong correlations exist among neutrino parameters, sparticle and Higgs masses, as well as lepton flavour violating processes. Hence, this scenario can be tested at high-energy colliders, such as the LHC, and at lower energy experiments that measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section

    The Maximal U(1)LU(1)_L Inverse Seesaw from d=5d=5 Operator and Oscillating Asymmetric Sneutrino Dark Matter

    Get PDF
    The maximal U(1)LU(1)_L supersymmetric inverse seesaw mechanism (MLLSIS) provides a natural way to relate asymmetric dark matter (ADM) with neutrino physics. In this paper we point out that, MLLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N)2S2/M∗(N)^2S^2/M_*, with SS the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale M∗M_*, thus preserving U(1)LU(1)_L maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet.Comment: journal versio

    Higgs friends and counterfeits at hadron colliders

    Get PDF
    We consider the possibility of "Higgs counterfeits" - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving "Higgs friends," fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW, ZZ, gamma gamma, or even gamma Z, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with "effective Z's," where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe

    Virus-Induced Cancers of the Skin and Mucosa:Are We Dealing with "Smoking Guns" or "Smoke and Mirrors" in the Operating Theatre?

    Get PDF
    Introduction: Human papillomavirus (HPV) alone is thought to cause ~610,000 cases of cancer per year, and is the dominant aetiological agent for ano-genital (esp. cervical) and head and neck cancers (esp. oropharyngeal). Merkel cell polyomavirus (MCV) is a more recently discovered virus which causes Merkel cell carcinoma, a rare but highly aggressive skin malignancy. Methods: We explored the available published evidence to see if transmission of live HPV or MCV virus in smoke generated by laser or diathermy was feasible, and would pose an infection risk. Long-term infection with such carcinogenic viruses would then pose an increased risk for the development of virus-induced cancers in medical personnel. Results: The morphological structures of both HPV and MCV are very similar, and the size, external capsids and genomic structures show striking similarity. Both viruses have a non-enveloped external protein capsid consisting of 72 capsomeres, and a double-stranded DNA core. Sizes of both viruses range from 50 to 60 nm. There are now recent data demonstrating live and infectious HPV in smoke, and that these viruses can be used to infect cells in vitro. Further, anecdotal reports of virus transmission leading to disease causation in the production of respiratory airway viral warts (benign disease), and, finally, reports of HPV-induced oropharyngeal carcinoma (malignant disease) in two gynaecological surgeons as an occupational health hazard have been published recently. Conclusion: There is now sufficient evidence to support the hypotheses that live infectious carcinogenic viruses can be transmitted via smoke generated from surgical procedures, and, in rare instances, actually cause significant disease. Protective measures such as smoke extraction and airway protection should be instituted for all healthcare personnel, particularly those with multiple repeated exposures such as gynaecological surgeons

    Negative Effect of Smoking on the Performance of the QuantiFERON TB Gold in Tube Test.

    Get PDF
    False negative and indeterminate Interferon Gamma Release Assay (IGRA) results are a well documented problem. Cigarette smoking is known to increase the risk of tuberculosis (TB) and to impair Interferon-gamma (IFN-γ) responses to antigenic challenge, but the impact of smoking on IGRA performance is not known. The aim of this study was to evaluate the effect of smoking on IGRA performance in TB patients in a low and high TB prevalence setting respectively. Patients with confirmed TB from Denmark (DK, n = 34; 20 smokers) and Tanzania (TZ, n = 172; 23 smokers) were tested with the QuantiFERON-TB Gold In tube (QFT). Median IFN-γ level in smokers and non smokers were compared and smoking was analysed as a risk factor for false negative and indeterminate QFT results. Smokers from both DK and TZ had lower IFN-γ antigen responses (median 0.9 vs. 4.2 IU/ml, p = 0.04 and 0.4 vs. 1.6, p < 0.01), less positive (50 vs. 86%, p = 0.03 and 48 vs. 75%, p < 0.01) and more false negative (45 vs. 0%, p < 0.01 and 26 vs. 11%, p = 0.04) QFT results. In Tanzanian patients, logistic regression analysis adjusted for sex, age, HIV and alcohol consumption showed an association of smoking with false negative (OR 17.1, CI: 3.0-99.1, p < 0.01) and indeterminate QFT results (OR 5.1, CI: 1.2-21.3, p = 0.02). Cigarette smoking was associated with false negative and indeterminate IGRA results in both a high and a low TB endemic setting independent of HIV status

    Phenomenology of Light Sneutrino Dark Matter in cMSSM/mSUGRA with Inverse Seesaw

    Full text link
    We study the possibility of a light Dark Matter (DM) within a constrained Minimal Supersymmetric Standard Model (cMSSM) framework augmented by a SM singlet-pair sector to account for the non-zero neutrino masses by inverse seesaw mechanism. Working within a 'hybrid' scenario with the MSSM sector fixed at high scale and the singlet neutrino sector at low scale, we find that, contrary to the case of the usual cMSSM where the neutralino DM cannot be very light, we can have a light sneutrino DM with mass below 100 GeV satisfying all the current experimental constraints from cosmology, collider as well as low-energy experiments. We also note that the supersymmetric inverse seesaw mechanism with sneutrino as the lightest supersymmetric partner can have enhanced same-sign dilepton final states with large missing transverse energy (mET) coming from the gluino- and squark-pair as well as the squark-gluino associated productions and their cascade decay through charginos. We present a collider study for the same-sign dilepton+jets+mET signal in this scenario and propose some distinctions with the usual cMSSM. We also comment on the implications of such a light DM scenario on the invisible decay width of an 125 GeV Higgs boson.Comment: 24 pages, 4 figures, 7 tables; matches published versio

    Disposition of Federally Owned Surpluses

    Get PDF
    PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to experimental challenges with backbone mutations. Here we address this interaction by generating semisynthetic PDZ domains containing backbone amide-to-ester mutations and evaluating the importance of individual hydrogen bonds for ligand binding. We observe substantial and differential effects upon amide-to-ester mutation in PDZ2 of postsynaptic density protein 95 and other PDZ domains, suggesting that hydrogen bonding at the carboxylate-binding site contributes to both affinity and selectivity. In particular, the hydrogen-bonding pattern is surprisingly different between the non-canonical and canonical interaction. Our data provide a detailed understanding of the role of hydrogen bonds in protein-protein interactions
    • …
    corecore