8,462 research outputs found

    A Trust Model Based on Service Classification in Mobile Services

    Full text link
    Internet of Things (IoT) and B3G/4G communication are promoting the pervasive mobile services with its advanced features. However, security problems are also baffled the development. This paper proposes a trust model to protect the user's security. The billing or trust operator works as an agent to provide a trust authentication for all the service providers. The services are classified by sensitive value calculation. With the value, the user's trustiness for corresponding service can be obtained. For decision, three trust regions are divided, which is referred to three ranks: high, medium and low. The trust region tells the customer, with his calculated trust value, which rank he has got and which authentication methods should be used for access. Authentication history and penalty are also involved with reasons.Comment: IEEE/ACM Internet of Things Symposium (IOTS), in conjunction with GreenCom 2010, IEEE, Hangzhou, China, December 18-20, 201

    Spin-flip reflection at the normal metal-spin superconductor interface

    Full text link
    We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin 2×/22\times \hbar/2 will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.Comment: 11 pages, 9 figure

    Ginzburg-Landau-type theory of non-polarized spin superconductivity

    Full text link
    Since the concept of spin superconductor was proposed, all the related studies concentrate on spin-polarized case. Here, we generalize the study to spin-non-polarized case. The free energy of non-polarized spin superconductor is obtained, and the Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by super spin current is equal to the one induced by equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and the related topics such as Bose-Einstein condensate of magnons and spin superfluidity.Comment: 9 pages, 5 figure
    corecore