68 research outputs found

    ALIP: Adaptive Language-Image Pre-training with Synthetic Caption

    Full text link
    Contrastive Language-Image Pre-training (CLIP) has significantly boosted the performance of various vision-language tasks by scaling up the dataset with image-text pairs collected from the web. However, the presence of intrinsic noise and unmatched image-text pairs in web data can potentially affect the performance of representation learning. To address this issue, we first utilize the OFA model to generate synthetic captions that focus on the image content. The generated captions contain complementary information that is beneficial for pre-training. Then, we propose an Adaptive Language-Image Pre-training (ALIP), a bi-path model that integrates supervision from both raw text and synthetic caption. As the core components of ALIP, the Language Consistency Gate (LCG) and Description Consistency Gate (DCG) dynamically adjust the weights of samples and image-text/caption pairs during the training process. Meanwhile, the adaptive contrastive loss can effectively reduce the impact of noise data and enhances the efficiency of pre-training data. We validate ALIP with experiments on different scales of models and pre-training datasets. Experiments results show that ALIP achieves state-of-the-art performance on multiple downstream tasks including zero-shot image-text retrieval and linear probe. To facilitate future research, the code and pre-trained models are released at https://github.com/deepglint/ALIP.Comment: 15pages, 10figures, ICCV202

    The Performance of Pleural Fluid T-SPOT.TB Assay for Diagnosing Tuberculous Pleurisy in China: A Two-Center Prospective Cohort Study

    Get PDF
    The performance of T-SPOT.TB (T-SPOT) assay in diagnosing pleural tuberculosis (plTB) is inconsistent. In this study, we compared the performance of peripheral blood (PB) and pleural fluid (PF) T-SPOT assay in diagnosing plTB. Between July 2017 and March 2018, 218 and 210 suspected plTB patients were prospectively enrolled from Wuhan (training) and Guangzhou (validation) cohort, respectively. PB T-SPOT, PF T-SPOT, and other conventional tests were simultaneously performed. Our data showed the performance of PB T-SPOT in diagnosing plTB was limited, especially with low sensitivity. However, the results of early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) in PF T-SPOT were significantly increased compared with those in PB T-SPOT in plTB patients. If using 76 as the cutoff value of MAX (the larger of ESAT-6 and CFP-10) in Wuhan cohort, the sensitivity and specificity of PF T-SPOT to diagnose plTB were 89.76 and 96.70%, respectively. The diagnostic accuracy of PF T-SPOT was better than other routine tests such as pathogen detection methods and biochemical markers. The diagnostic accuracy of PF T-SPOT in Guangzhou cohort was similar to that in Wuhan cohort, with a sensitivity and specificity of 91.07 and 94.90%, respectively. Furthermore, CD4+ T cells were more activated in PF compared with PB, and the frequency of mycobacterium tuberculosis-specific CD4+ T cells in PF was significantly higher than that in PB in plTB patients. In conclusion, the performance of PF T-SPOT is obviously better than PB T-SPOT or other laboratory tests, which suggests that PF T-SPOT assay has been of great value in the diagnosis of pleural tuberculosis

    Effect of saline water on the synergistic interaction between diesel and Triton X-100 in the flotation of oxidized coal

    No full text
    In this study, the effect of medium saline water on the synergistic interaction between diesel and Triton X-100 in the flotation of oxidized coal was investigated. The results showed that the flotation yield of oxidized coal in saline water was higher than that in de-ionized (DI) water due to the promotion of diesel adsorption, which was attributed to the screening of electrostatic repulsion between diesel droplets and coal particles in saline water. Meanwhile, the flotation of oxidized coal could be significantly improved when Triton X-100 was added with diesel as a composite collector, and less Triton X-100 was required in saline water than that in DI water to achieve the same true flotation yield, indicating that saline water could increase the effectiveness of Triton X-100 in improving oxidized coal flotation. A mechanism study revealed that Triton X-100 was able to promote diesel adsorption on oxidized coal through emulsification, thus increasing the surface hydrophobicity of oxidized coal through hydrogen bonding between the headgroups of Triton X-100 and the oxygenated groups on coal surfaces. The non-ionic characteristic of Triton X-100 ensured its capability of enhancing oxidized coal flotation in both DI water and saline water

    Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production

    No full text
    Fly ash is a by-product from burning of coal. Utilization of fly ash by carbothermic reduction is an effective way to recover aluminum, silicon, and iron to enhance product-added value. This work is focused on the phase transformation of Al2O3, SiO2 and Fe2O3 during carbothermic reduction of fly ash in air. A comparative analysis of carbothermic reduction of fly ash in air and in nitrogen was made. Thermodynamics analysis was performed to illustrate the possible reactions for residue and condensate. X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectrometry (EDS) were employed to characterize the phase composition, surface morphology, and microstructure of the reduced products. Results show that Fe3Si and Fe2Si appear sequentially with increasing of temperature. Al5O6N is an intermediate compound. Residue of Al9FeSi3, Al, and Si, and condensate of SiC, AlN and C are obtained. β-SiAlON was not found in the residue. Nitrogen is involved in the reduction of Al2O3 but not in the reduction of SiO2 and Fe2O3. Carbothermic reduction of fly ash in air did not behave the same as fly ash in nitrogen
    • …
    corecore