193 research outputs found
Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source
In order to improve the working performance of the lithium-ion battery, the battery module with Phase change material/water cooling-plate was designed and numerically analyzed based on the energy conservation and fluid dynamics. The non-uniform internal heat source based on 2D electro-thermal model for battery LiFePO4/C was used to simulate the heat generation of each battery. Then factors such as height of water cooling-plate, space between adjacent batteries, inlet mass flow rate, flow direction, thermal conductivity and melting point of PCM were discussed to research their influences on the cooling performance of module. And the 5 continuous charge-discharge cycles was used to research the effect of PCM/water cooling plate on preventing thermal runaway. The results showed that the water cooling plate set close to the near-electrode area of battery removed the majority of heat generated during discharging and decreased the maximum temperature efficiently. The PCM between the adjacent batteries could improve the uniformity of temperature field. In addition, the PCM/water cooling plate could limit the maximum temperature effectively and improve the uniformity of temperature field during the 5 continuous charge-discharge cycles. As a result, it prevented the emergence of thermal runaway and increased the safety of module. (C) 2017 Elsevier Ltd. All rights reserved
Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate
In this paper, the thermal management based on phase change slurry (PCS) and mini channel cooling plate for the lithium-ion pouch battery module was proposed. The three-dimensional thermal model was established and the optimum structure of the cooling plate with mini channel was designed with the orthogonal matrix experimental method to balance the cooling performance and energy consumption. The simulation results showed that the cooling performance of PCS consisting of 20% n-octadecane microcapsules and 80% water was better than that of pure water, glycol solution and mineral oil, when the mass flow rate was less than 3 x 10(-4) kg s(-1). For different concentrations of PCS, if the mass flow rate exceeded the critical value, its cooling performance was worse than that of pure water. When the cooling target for battery maximum temperature was higher than 309 K, the PCS cooling with appropriate microcapsule concentration had the edge over in energy consumption compared with water cooling. At last, the dimensionless empirical formula was obtained to predict the effect of the PCS's physical parameters and flow characteristics on the heat transfer and cooling performance. The simulation results will be useful for the design of PCS based battery thermal management systems. (C) 2018 Elsevier Ltd. All rights reserved
Glutamine in suppression of lipopolysaccharide-induced piglet intestinal inflammation: The crosstalk between AMPK activation and mitochondrial function
Publication history: Accepted - 18 March 2022; Published online - 26 March 2022.The study was conducted to investigate the regulatory mechanism of glutamine (Gln) on intestinal inflammation in an Escherichia coli lipopolysaccharide (E. coli LPS)-induced in vivo and in vitro models. Piglets (n = 8) weaned at 21 d of age were fed a basal diet (control and LPS groups) or 1% Gln diet (Gln + LPS group) ad libitum for 4 weeks. On d 22, 24, 26 and 28, piglets in the LPS and Gln + LPS groups were intraperitoneally injected with E. coli LPS. Intestinal porcine epithelial cells (IPEC-J2) (n = 6) induced by LPS were used to assess related mechanisms and compound C was used to inhibit adenosine 5′-monophosphate-activated protein kinase (AMPK) activity. Our current results showed that compared with the LPS treatment, the Gln + LPS treatment had better growth performance and greater villus height (P < 0.05), and the Gln + LPS treatment reduced the rate of diarrhea by 6.4% (P < 0.05); the Gln + LPS treatment decreased serum tumor necrosis factor (TNF-ɑ), interleukin-6 (IL-6), K+, cortisol and insulin levels, whereas increased (P < 0.05) serum immunoglobulin M and epidermal growth factor levels; the Gln + LPS treatment increased (P < 0.05) the expression of aquaporins and AMPK pathway-associated targets in the jejunum and ileum of piglets, whereas decreased the expression of ion transporters (P < 0.05). The in vitro results showed that 4 mmol/L Gln administration could inhibit (P < 0.05) cell apoptosis and interleukin-1β (IL-1β), IL-6 and TNF-ɑ secretion in LPS-induced IPEC-J2 cells, promote (P < 0.05) mitochondrial respiratory metabolism and increase (P < 0.05) the number of mitochondria and mitochondrial membrane potential. The activity of AMPK was elevated by 70% to 300% in Gln-treated IPEC-J2 cells under LPS challenge or normal conditions. Our results indicate that pre-administration of Gln to piglets suppresses intestinal inflammation by modulating the crosstalk between AMPK activation and mitochondrial function.This work was supported by Huxiang Young Talent Support
Program (2020RC3052), Natural Science Foundation of China
(31902168, 31872371), Hunan Key Research and Development Plan
(2020NK2059), State Key Laboratory of Animal Nutrition
(2004DA125184F1907), Special Funds for Construction of Innovative
Provinces in Hunan Province (2019RS3022), Guangxi Key
Research and Development Plan (Guike AB19259012), and Guangxi
Guilin Science and Technology Planning Project (2020010901)
MiR-29a Knockout Aggravates Neurological Damage by Pre-polarizing M1 Microglia in Experimental Rat Models of Acute Stroke
ObjectiveBy exploring the effects of miR-29a-5p knockout on neurological damage after acute ischemic stroke, we aim to deepen understanding of the molecular mechanisms of post-ischemic injury and thus provide new ideas for the treatment of ischemic brain injury.MethodsmiR-29a-5p knockout rats and wild-type SD rats were subjected to transient middle cerebral artery occlusion (MCAO). miR-29a levels in plasma, cortex, and basal ganglia of ischemic rats, and in plasma and neutrophils of ischemic stroke patients, as well as hypoxic glial cells were detected by real-time PCR. The infarct volume was detected by TTC staining and the activation of astrocytes and microglia was detected by western blotting.ResultsThe expression of miR-29a-5p was decreased in parallel in blood and brain tissue of rat MCAO models. Besides, miR-29a-5p levels were reduced in the peripheral blood of acute stroke patients. Knockout of miR-29a enhanced infarct volume of the MCAO rat model, and miR-29a knockout showed M1 polarization of microglia in the MCAO rat brain. miR-29a knockout in rats after MCAO promoted astrocyte proliferation and increased glutamate release.ConclusionKnockout of miR-29a in rats promoted M1 microglial polarization and increased glutamate release, thereby aggravating neurological damage in experimental stroke rat models
100 essential questions for the future of agriculture
Publication history: Accepted - 8 March 2023; Published online - 11 April 2023.The world is at a crossroad when it comes to agriculture. The global population is growing, and the demand for food is increasing, putting a strain on our agricultural resources and practices. To address this challenge, innovative, sustainable, and inclusive approaches to agriculture are urgently required. In this paper, we launched a call for Essential Questions for the Future of Agriculture and identified a priority list of 100 questions. We focus on 10 primary themes: transforming agri-food systems, enhancing resilience of agriculture to climate change, mitigating climate change through agriculture, exploring resources and technologies for breeding, advancing cultivation methods, sustaining healthy agroecosystems, enabling smart and controlled-environment agriculture for food security, promoting health and nutrition-driven agriculture, exploring economic opportunities and addressing social challenges, and integrating one health and modern agriculture. We emphasise the critical importance of interdisciplinary and multidisciplinary research that integrates both basic and applied sciences and bridges the gaps among various stakeholders for achieving sustainable agriculture.
Key points
Growing demand and resource limitations pose a critical challenge for agriculture, necessitating innovative and sustainable approaches.
The paper identifies 100 priority questions for the future of agriculture, indicating current and future research directions.
Sustainable agriculture depends on interdisciplinary and multidisciplinary research that harmonises basic and applied sciences and fosters collaboration among different stakeholders
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
- …